Can Zipf's law be adapted to normalize microarrays? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Tim Lu, Christine M Costello, Peter JP Croucher, Robert Häsler, Günther Deuschl, Stefan Schreiber

ABSTRACT

BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays). More... »

PAGES

37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-37

DOI

http://dx.doi.org/10.1186/1471-2105-6-37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016992435

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15727680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Tim", 
        "id": "sg:person.01011776737.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011776737.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College Dublin", 
          "id": "https://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany", 
            "The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costello", 
        "givenName": "Christine M", 
        "id": "sg:person.0732161347.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732161347.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Croucher", 
        "givenName": "Peter JP", 
        "id": "sg:person.015160067334.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160067334.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4sler", 
        "givenName": "Robert", 
        "id": "sg:person.01333531120.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333531120.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Schleswig-Holstein", 
          "id": "https://www.grid.ac/institutes/grid.412468.d", 
          "name": [
            "Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deuschl", 
        "givenName": "G\u00fcnther", 
        "id": "sg:person.014763407717.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763407717.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "Stefan", 
        "id": "sg:person.01223143620.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223143620.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.90.088102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004651533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.088102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004651533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005297170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008750939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009481538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0306244101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009692048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.10073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014558773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.4.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029899796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crvi.2003.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040306630", 
          "https://doi.org/10.1038/70487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040306630", 
          "https://doi.org/10.1038/70487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040652873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.11.e50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041183788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.10.e47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042663329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044474103", 
          "https://doi.org/10.1038/4427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044474103", 
          "https://doi.org/10.1038/4427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/332306.332355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049104539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/332306.332355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049104539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670452", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091357", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented.\nRESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques.\nCONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Can Zipf's law be adapted to normalize microarrays?", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50f58fc9898703da849ba1509a4a3b42ad7d19ebe65c9091d06809c7b402be6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15727680"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-37"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016992435"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-37", 
      "https://app.dimensions.ai/details/publication/pub.1016992435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-6-37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      73 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-37 schema:about N11e23c2a34d04f10b71092359f80f167
2 N16356cb1bc62489895515e73eba008c7
3 N17d991623e96472c80647465b85af14e
4 N23c12f5c66e443708f631be2f95f1f50
5 N294a53e8587d4ea4adeae7e3984cd2cf
6 N30f844e826f540529010c924e3cdad58
7 N412b02d6201e4986935e4e6d3c6e7bf3
8 N55d9f3d2632c435ab86b7bf237eb58c1
9 N68ff1b42e24d4c12801b0c63484fe43e
10 N6b00e8e1fe3f4e3ab3e8e85def3df22d
11 N75acbc4150e4487d953850136868ed14
12 N798e979ca22945d28122e2357039ec4c
13 N918cee7aee7d405f8c56a5fefa0c3183
14 N95ab11639c6b4b8eab84b069e66e9017
15 Na2d9471677374a6a853cf32477ca0e0c
16 Nbeeb3c3fe6fe4229b7001cd23ffdecec
17 Nca5ba371f230407fa41e09b1b2e5f8ea
18 Ncc53d8453ba044be9edf219491cc3f20
19 Nd9aeb5b7b15c4adcb900378a03f3677e
20 Ne07010598eb14d87830b4432c4ce02d0
21 Ne796a3c5281d45e4a04d7453c65adfa2
22 Ned84ba5e463a46c5aeb14b58dae9adb1
23 Nff68a5c97a6643688e484b14774f4583
24 anzsrc-for:18
25 anzsrc-for:1801
26 schema:author Nb9d32677f50c450bbd6a380e16aaa1a1
27 schema:citation sg:pub.10.1038/4427
28 sg:pub.10.1038/4462
29 sg:pub.10.1038/70487
30 sg:pub.10.1038/73432
31 https://app.dimensions.ai/details/publication/pub.1074670452
32 https://app.dimensions.ai/details/publication/pub.1075091357
33 https://doi.org/10.1002/jcb.10073
34 https://doi.org/10.1016/j.crvi.2003.09.031
35 https://doi.org/10.1073/pnas.0306244101
36 https://doi.org/10.1089/10665270050514954
37 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323
38 https://doi.org/10.1093/bioinformatics/18.2.251
39 https://doi.org/10.1093/bioinformatics/18.4.576
40 https://doi.org/10.1093/bioinformatics/19.2.185
41 https://doi.org/10.1093/bioinformatics/btg146
42 https://doi.org/10.1093/nar/28.10.e47
43 https://doi.org/10.1093/nar/30.1.207
44 https://doi.org/10.1093/nar/30.11.e50
45 https://doi.org/10.1093/nar/30.4.e15
46 https://doi.org/10.1103/physrevlett.90.088102
47 https://doi.org/10.1145/332306.332355
48 schema:datePublished 2005-12
49 schema:datePublishedReg 2005-12-01
50 schema:description BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays).
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N2128816c3fa34d45b66fd7a17dd54f5b
55 N50cf3134cda445a8b0bad9fd9b31b587
56 sg:journal.1023786
57 schema:name Can Zipf's law be adapted to normalize microarrays?
58 schema:pagination 37
59 schema:productId N374f581ed0414d29ad9374858b31f132
60 N39c7391f961a449cbee6951973c65a83
61 N40174ac9291343c9a67cbdc1d8caca79
62 N5c7ef90a0cd5404abe0a7f909088d3a1
63 N5d8852ffddd24c6e82fdcb5a64adb984
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016992435
65 https://doi.org/10.1186/1471-2105-6-37
66 schema:sdDatePublished 2019-04-11T09:36
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N8010d30674a54b609ebf3cf252588d71
69 schema:url https://link.springer.com/10.1186%2F1471-2105-6-37
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N11e23c2a34d04f10b71092359f80f167 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Data Interpretation, Statistical
75 rdf:type schema:DefinedTerm
76 N16356cb1bc62489895515e73eba008c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Models, Theoretical
78 rdf:type schema:DefinedTerm
79 N17d991623e96472c80647465b85af14e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Gene Expression
81 rdf:type schema:DefinedTerm
82 N2128816c3fa34d45b66fd7a17dd54f5b schema:volumeNumber 6
83 rdf:type schema:PublicationVolume
84 N23c12f5c66e443708f631be2f95f1f50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Animals
86 rdf:type schema:DefinedTerm
87 N294a53e8587d4ea4adeae7e3984cd2cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Algorithms
89 rdf:type schema:DefinedTerm
90 N2a78aaefd71a4367bb1d67aaf492dfe9 rdf:first sg:person.014763407717.68
91 rdf:rest N96650b981fdf4f7288d0eb585afd2afe
92 N2c8e77a63ade44e0ab32de7c658f473c rdf:first sg:person.01333531120.35
93 rdf:rest N2a78aaefd71a4367bb1d67aaf492dfe9
94 N30f844e826f540529010c924e3cdad58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Expressed Sequence Tags
96 rdf:type schema:DefinedTerm
97 N374f581ed0414d29ad9374858b31f132 schema:name nlm_unique_id
98 schema:value 100965194
99 rdf:type schema:PropertyValue
100 N39c7391f961a449cbee6951973c65a83 schema:name doi
101 schema:value 10.1186/1471-2105-6-37
102 rdf:type schema:PropertyValue
103 N40174ac9291343c9a67cbdc1d8caca79 schema:name readcube_id
104 schema:value 50f58fc9898703da849ba1509a4a3b42ad7d19ebe65c9091d06809c7b402be6a
105 rdf:type schema:PropertyValue
106 N412b02d6201e4986935e4e6d3c6e7bf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Sensitivity and Specificity
108 rdf:type schema:DefinedTerm
109 N50cf3134cda445a8b0bad9fd9b31b587 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 N55d9f3d2632c435ab86b7bf237eb58c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Analysis of Variance
113 rdf:type schema:DefinedTerm
114 N5c7ef90a0cd5404abe0a7f909088d3a1 schema:name pubmed_id
115 schema:value 15727680
116 rdf:type schema:PropertyValue
117 N5d8852ffddd24c6e82fdcb5a64adb984 schema:name dimensions_id
118 schema:value pub.1016992435
119 rdf:type schema:PropertyValue
120 N68ff1b42e24d4c12801b0c63484fe43e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Oligonucleotide Array Sequence Analysis
122 rdf:type schema:DefinedTerm
123 N6b00e8e1fe3f4e3ab3e8e85def3df22d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 N75acbc4150e4487d953850136868ed14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Gene Expression Profiling
128 rdf:type schema:DefinedTerm
129 N797af82e289243c1a781bbd726aca05d rdf:first sg:person.0732161347.68
130 rdf:rest N957ffff4f080463b9df439c6e6bd4363
131 N798e979ca22945d28122e2357039ec4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Models, Statistical
133 rdf:type schema:DefinedTerm
134 N8010d30674a54b609ebf3cf252588d71 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N918cee7aee7d405f8c56a5fefa0c3183 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Gene Expression Regulation
138 rdf:type schema:DefinedTerm
139 N957ffff4f080463b9df439c6e6bd4363 rdf:first sg:person.015160067334.49
140 rdf:rest N2c8e77a63ade44e0ab32de7c658f473c
141 N95ab11639c6b4b8eab84b069e66e9017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Databases, Genetic
143 rdf:type schema:DefinedTerm
144 N96650b981fdf4f7288d0eb585afd2afe rdf:first sg:person.01223143620.01
145 rdf:rest rdf:nil
146 Na2d9471677374a6a853cf32477ca0e0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Computational Biology
148 rdf:type schema:DefinedTerm
149 Nb9d32677f50c450bbd6a380e16aaa1a1 rdf:first sg:person.01011776737.68
150 rdf:rest N797af82e289243c1a781bbd726aca05d
151 Nbeeb3c3fe6fe4229b7001cd23ffdecec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Likelihood Functions
153 rdf:type schema:DefinedTerm
154 Nca5ba371f230407fa41e09b1b2e5f8ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Sequence Analysis, DNA
156 rdf:type schema:DefinedTerm
157 Ncc53d8453ba044be9edf219491cc3f20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Rats
159 rdf:type schema:DefinedTerm
160 Nd9aeb5b7b15c4adcb900378a03f3677e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Computer Simulation
162 rdf:type schema:DefinedTerm
163 Ne07010598eb14d87830b4432c4ce02d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Calibration
165 rdf:type schema:DefinedTerm
166 Ne796a3c5281d45e4a04d7453c65adfa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Regression Analysis
168 rdf:type schema:DefinedTerm
169 Ned84ba5e463a46c5aeb14b58dae9adb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name RNA
171 rdf:type schema:DefinedTerm
172 Nff68a5c97a6643688e484b14774f4583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Models, Genetic
174 rdf:type schema:DefinedTerm
175 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
176 schema:name Law and Legal Studies
177 rdf:type schema:DefinedTerm
178 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
179 schema:name Law
180 rdf:type schema:DefinedTerm
181 sg:journal.1023786 schema:issn 1471-2105
182 schema:name BMC Bioinformatics
183 rdf:type schema:Periodical
184 sg:person.01011776737.68 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
185 schema:familyName Lu
186 schema:givenName Tim
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011776737.68
188 rdf:type schema:Person
189 sg:person.01223143620.01 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
190 schema:familyName Schreiber
191 schema:givenName Stefan
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223143620.01
193 rdf:type schema:Person
194 sg:person.01333531120.35 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
195 schema:familyName Häsler
196 schema:givenName Robert
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333531120.35
198 rdf:type schema:Person
199 sg:person.014763407717.68 schema:affiliation https://www.grid.ac/institutes/grid.412468.d
200 schema:familyName Deuschl
201 schema:givenName Günther
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763407717.68
203 rdf:type schema:Person
204 sg:person.015160067334.49 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
205 schema:familyName Croucher
206 schema:givenName Peter JP
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160067334.49
208 rdf:type schema:Person
209 sg:person.0732161347.68 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
210 schema:familyName Costello
211 schema:givenName Christine M
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732161347.68
213 rdf:type schema:Person
214 sg:pub.10.1038/4427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044474103
215 https://doi.org/10.1038/4427
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
218 https://doi.org/10.1038/4462
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/70487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040306630
221 https://doi.org/10.1038/70487
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/73432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024393583
224 https://doi.org/10.1038/73432
225 rdf:type schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1074670452 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1075091357 schema:CreativeWork
228 https://doi.org/10.1002/jcb.10073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014558773
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.crvi.2003.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034340041
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0306244101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009692048
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1089/10665270050514954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204847
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008750939
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/18.2.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009481538
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bioinformatics/18.4.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029899796
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/btg146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040652873
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/28.10.e47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042663329
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/30.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005297170
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/30.11.e50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041183788
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.90.088102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004651533
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1145/332306.332355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049104539
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.412468.d schema:alternateName University Hospital Schleswig-Holstein
259 schema:name Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.7886.1 schema:alternateName University College Dublin
262 schema:name Department of Medicine, Christian-Albrechts-University, Kiel, Germany
263 The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.9764.c schema:alternateName Kiel University
266 schema:name Department of Medicine, Christian-Albrechts-University, Kiel, Germany
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...