Can Zipf's law be adapted to normalize microarrays? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Tim Lu, Christine M Costello, Peter JP Croucher, Robert Häsler, Günther Deuschl, Stefan Schreiber

ABSTRACT

BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays). More... »

PAGES

37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-37

DOI

http://dx.doi.org/10.1186/1471-2105-6-37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016992435

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15727680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Tim", 
        "id": "sg:person.01011776737.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011776737.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College Dublin", 
          "id": "https://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany", 
            "The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costello", 
        "givenName": "Christine M", 
        "id": "sg:person.0732161347.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732161347.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Croucher", 
        "givenName": "Peter JP", 
        "id": "sg:person.015160067334.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160067334.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4sler", 
        "givenName": "Robert", 
        "id": "sg:person.01333531120.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333531120.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Schleswig-Holstein", 
          "id": "https://www.grid.ac/institutes/grid.412468.d", 
          "name": [
            "Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deuschl", 
        "givenName": "G\u00fcnther", 
        "id": "sg:person.014763407717.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763407717.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "Stefan", 
        "id": "sg:person.01223143620.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223143620.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.90.088102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004651533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.088102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004651533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005297170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008750939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009481538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0306244101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009692048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.10073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014558773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.4.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029899796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crvi.2003.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040306630", 
          "https://doi.org/10.1038/70487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040306630", 
          "https://doi.org/10.1038/70487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040652873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.11.e50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041183788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.10.e47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042663329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044474103", 
          "https://doi.org/10.1038/4427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044474103", 
          "https://doi.org/10.1038/4427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/332306.332355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049104539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/332306.332355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049104539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670452", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091357", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented.\nRESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques.\nCONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Can Zipf's law be adapted to normalize microarrays?", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50f58fc9898703da849ba1509a4a3b42ad7d19ebe65c9091d06809c7b402be6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15727680"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-37"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016992435"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-37", 
      "https://app.dimensions.ai/details/publication/pub.1016992435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-6-37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      73 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-37 schema:about N06cd8525ec574399b29c2de5262a9f7d
2 N0c1aaef9058d4f479c36c9485703c946
3 N0e6e4e4bfdea4550846537083fdb988c
4 N18247211c7e84d8986a2f8249be6894d
5 N283c6f20f7d84e82b161d5e175390203
6 N300e2860d2b1438091ad52962b00e606
7 N45312d9beb314b80bf60eeedd4758883
8 N464f2e0d6eac464686f0064f9dc21041
9 N47a573859811459f95b2258b6d3e1ebb
10 N4eec293c9eee463ea3368b6be7fc55d2
11 N50b3f46139c944b7a1a16daef51ea146
12 N56c966e1317046dc8821089978c0996d
13 N5a8c2cc8c22a42a28e3fe26b31b5466b
14 N6eeaef1ee1c04ed49e652642e3e87b7a
15 N7cb8c216c92e4c93b7494a9e1b7e22da
16 N962a43317f014afb8fabfa9527c1040f
17 N9f5ebb27323843d29b590818523304ee
18 Na43c996d951d4a038680f74a8af1f510
19 Nc3ff61d8b7b04aa2af00d61411f965eb
20 Nca4b541fd96647aeb258b031a438baec
21 Ncbd45c220b9744ea8bd11ce7b0da0aec
22 Nf7e1cabb02f4497fa15e8d7f2f66f298
23 Nfb2c09479107416c8d53a12fe68387f1
24 anzsrc-for:18
25 anzsrc-for:1801
26 schema:author Na6aba4edc42a45ce9e096e79364ac020
27 schema:citation sg:pub.10.1038/4427
28 sg:pub.10.1038/4462
29 sg:pub.10.1038/70487
30 sg:pub.10.1038/73432
31 https://app.dimensions.ai/details/publication/pub.1074670452
32 https://app.dimensions.ai/details/publication/pub.1075091357
33 https://doi.org/10.1002/jcb.10073
34 https://doi.org/10.1016/j.crvi.2003.09.031
35 https://doi.org/10.1073/pnas.0306244101
36 https://doi.org/10.1089/10665270050514954
37 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323
38 https://doi.org/10.1093/bioinformatics/18.2.251
39 https://doi.org/10.1093/bioinformatics/18.4.576
40 https://doi.org/10.1093/bioinformatics/19.2.185
41 https://doi.org/10.1093/bioinformatics/btg146
42 https://doi.org/10.1093/nar/28.10.e47
43 https://doi.org/10.1093/nar/30.1.207
44 https://doi.org/10.1093/nar/30.11.e50
45 https://doi.org/10.1093/nar/30.4.e15
46 https://doi.org/10.1103/physrevlett.90.088102
47 https://doi.org/10.1145/332306.332355
48 schema:datePublished 2005-12
49 schema:datePublishedReg 2005-12-01
50 schema:description BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays).
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N567f072a29c44270b73edca506ba7d1c
55 N66c529532ddc46bf9f57a0661c40d38d
56 sg:journal.1023786
57 schema:name Can Zipf's law be adapted to normalize microarrays?
58 schema:pagination 37
59 schema:productId N1fde57fc0ac74b178bb89ebcec877cf8
60 Na0cf1366d65843bf9a840c82cd91ab16
61 Nde03eddb0c6f4078821435b02dfe49e9
62 Ndf42a84b5bb3426fbebf4ab997e61ce4
63 Nebd8cd31e692414f8ce334dacf710f9c
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016992435
65 https://doi.org/10.1186/1471-2105-6-37
66 schema:sdDatePublished 2019-04-11T09:36
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N020c020190a44ee69a63a0808cf24510
69 schema:url https://link.springer.com/10.1186%2F1471-2105-6-37
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N020c020190a44ee69a63a0808cf24510 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N06cd8525ec574399b29c2de5262a9f7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Regression Analysis
77 rdf:type schema:DefinedTerm
78 N0c1aaef9058d4f479c36c9485703c946 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Sequence Analysis, DNA
80 rdf:type schema:DefinedTerm
81 N0e6e4e4bfdea4550846537083fdb988c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name RNA
83 rdf:type schema:DefinedTerm
84 N18247211c7e84d8986a2f8249be6894d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Algorithms
86 rdf:type schema:DefinedTerm
87 N1fde57fc0ac74b178bb89ebcec877cf8 schema:name doi
88 schema:value 10.1186/1471-2105-6-37
89 rdf:type schema:PropertyValue
90 N283c6f20f7d84e82b161d5e175390203 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Theoretical
92 rdf:type schema:DefinedTerm
93 N290666f155ba4b8e97b507c45cb82ff8 rdf:first sg:person.015160067334.49
94 rdf:rest N8ad6ba1a040a44988f1a9272059bd2a0
95 N300e2860d2b1438091ad52962b00e606 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Computer Simulation
97 rdf:type schema:DefinedTerm
98 N45312d9beb314b80bf60eeedd4758883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Gene Expression
100 rdf:type schema:DefinedTerm
101 N464f2e0d6eac464686f0064f9dc21041 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Animals
103 rdf:type schema:DefinedTerm
104 N47a573859811459f95b2258b6d3e1ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Statistical
106 rdf:type schema:DefinedTerm
107 N4eec293c9eee463ea3368b6be7fc55d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Analysis of Variance
109 rdf:type schema:DefinedTerm
110 N50b3f46139c944b7a1a16daef51ea146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Databases, Genetic
112 rdf:type schema:DefinedTerm
113 N567f072a29c44270b73edca506ba7d1c schema:volumeNumber 6
114 rdf:type schema:PublicationVolume
115 N56c966e1317046dc8821089978c0996d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Humans
117 rdf:type schema:DefinedTerm
118 N5a8c2cc8c22a42a28e3fe26b31b5466b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gene Expression Profiling
120 rdf:type schema:DefinedTerm
121 N66c529532ddc46bf9f57a0661c40d38d schema:issueNumber 1
122 rdf:type schema:PublicationIssue
123 N6eeaef1ee1c04ed49e652642e3e87b7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Models, Genetic
125 rdf:type schema:DefinedTerm
126 N7cb8c216c92e4c93b7494a9e1b7e22da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Rats
128 rdf:type schema:DefinedTerm
129 N8ad6ba1a040a44988f1a9272059bd2a0 rdf:first sg:person.01333531120.35
130 rdf:rest Naea0c789e6a54a469429ce3ad075aed5
131 N962a43317f014afb8fabfa9527c1040f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Expressed Sequence Tags
133 rdf:type schema:DefinedTerm
134 N9f5ebb27323843d29b590818523304ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Oligonucleotide Array Sequence Analysis
136 rdf:type schema:DefinedTerm
137 Na0cf1366d65843bf9a840c82cd91ab16 schema:name pubmed_id
138 schema:value 15727680
139 rdf:type schema:PropertyValue
140 Na43c996d951d4a038680f74a8af1f510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Likelihood Functions
142 rdf:type schema:DefinedTerm
143 Na6aba4edc42a45ce9e096e79364ac020 rdf:first sg:person.01011776737.68
144 rdf:rest Nc3308d889f8c4124bd4126d5ba0c3671
145 Naea0c789e6a54a469429ce3ad075aed5 rdf:first sg:person.014763407717.68
146 rdf:rest Nd24945fd59194532ae208bd23eb5e638
147 Nc3308d889f8c4124bd4126d5ba0c3671 rdf:first sg:person.0732161347.68
148 rdf:rest N290666f155ba4b8e97b507c45cb82ff8
149 Nc3ff61d8b7b04aa2af00d61411f965eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Calibration
151 rdf:type schema:DefinedTerm
152 Nca4b541fd96647aeb258b031a438baec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Sensitivity and Specificity
154 rdf:type schema:DefinedTerm
155 Ncbd45c220b9744ea8bd11ce7b0da0aec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Data Interpretation, Statistical
157 rdf:type schema:DefinedTerm
158 Nd24945fd59194532ae208bd23eb5e638 rdf:first sg:person.01223143620.01
159 rdf:rest rdf:nil
160 Nde03eddb0c6f4078821435b02dfe49e9 schema:name readcube_id
161 schema:value 50f58fc9898703da849ba1509a4a3b42ad7d19ebe65c9091d06809c7b402be6a
162 rdf:type schema:PropertyValue
163 Ndf42a84b5bb3426fbebf4ab997e61ce4 schema:name nlm_unique_id
164 schema:value 100965194
165 rdf:type schema:PropertyValue
166 Nebd8cd31e692414f8ce334dacf710f9c schema:name dimensions_id
167 schema:value pub.1016992435
168 rdf:type schema:PropertyValue
169 Nf7e1cabb02f4497fa15e8d7f2f66f298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Computational Biology
171 rdf:type schema:DefinedTerm
172 Nfb2c09479107416c8d53a12fe68387f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Gene Expression Regulation
174 rdf:type schema:DefinedTerm
175 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
176 schema:name Law and Legal Studies
177 rdf:type schema:DefinedTerm
178 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
179 schema:name Law
180 rdf:type schema:DefinedTerm
181 sg:journal.1023786 schema:issn 1471-2105
182 schema:name BMC Bioinformatics
183 rdf:type schema:Periodical
184 sg:person.01011776737.68 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
185 schema:familyName Lu
186 schema:givenName Tim
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011776737.68
188 rdf:type schema:Person
189 sg:person.01223143620.01 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
190 schema:familyName Schreiber
191 schema:givenName Stefan
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223143620.01
193 rdf:type schema:Person
194 sg:person.01333531120.35 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
195 schema:familyName Häsler
196 schema:givenName Robert
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333531120.35
198 rdf:type schema:Person
199 sg:person.014763407717.68 schema:affiliation https://www.grid.ac/institutes/grid.412468.d
200 schema:familyName Deuschl
201 schema:givenName Günther
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763407717.68
203 rdf:type schema:Person
204 sg:person.015160067334.49 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
205 schema:familyName Croucher
206 schema:givenName Peter JP
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160067334.49
208 rdf:type schema:Person
209 sg:person.0732161347.68 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
210 schema:familyName Costello
211 schema:givenName Christine M
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732161347.68
213 rdf:type schema:Person
214 sg:pub.10.1038/4427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044474103
215 https://doi.org/10.1038/4427
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
218 https://doi.org/10.1038/4462
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/70487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040306630
221 https://doi.org/10.1038/70487
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/73432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024393583
224 https://doi.org/10.1038/73432
225 rdf:type schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1074670452 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1075091357 schema:CreativeWork
228 https://doi.org/10.1002/jcb.10073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014558773
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.crvi.2003.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034340041
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0306244101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009692048
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1089/10665270050514954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204847
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008750939
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/18.2.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009481538
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bioinformatics/18.4.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029899796
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/btg146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040652873
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/28.10.e47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042663329
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/30.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005297170
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/30.11.e50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041183788
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.90.088102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004651533
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1145/332306.332355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049104539
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.412468.d schema:alternateName University Hospital Schleswig-Holstein
259 schema:name Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.7886.1 schema:alternateName University College Dublin
262 schema:name Department of Medicine, Christian-Albrechts-University, Kiel, Germany
263 The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.9764.c schema:alternateName Kiel University
266 schema:name Department of Medicine, Christian-Albrechts-University, Kiel, Germany
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...