Can Zipf's law be adapted to normalize microarrays? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Tim Lu, Christine M Costello, Peter JP Croucher, Robert Häsler, Günther Deuschl, Stefan Schreiber

ABSTRACT

BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays). More... »

PAGES

37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-37

DOI

http://dx.doi.org/10.1186/1471-2105-6-37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016992435

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15727680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Tim", 
        "id": "sg:person.01011776737.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011776737.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College Dublin", 
          "id": "https://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany", 
            "The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costello", 
        "givenName": "Christine M", 
        "id": "sg:person.0732161347.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732161347.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Croucher", 
        "givenName": "Peter JP", 
        "id": "sg:person.015160067334.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160067334.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4sler", 
        "givenName": "Robert", 
        "id": "sg:person.01333531120.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333531120.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Schleswig-Holstein", 
          "id": "https://www.grid.ac/institutes/grid.412468.d", 
          "name": [
            "Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deuschl", 
        "givenName": "G\u00fcnther", 
        "id": "sg:person.014763407717.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763407717.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Department of Medicine, Christian-Albrechts-University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "Stefan", 
        "id": "sg:person.01223143620.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223143620.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.90.088102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004651533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.088102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004651533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005297170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008750939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009481538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0306244101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009692048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.10073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014558773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.4.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029899796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crvi.2003.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040306630", 
          "https://doi.org/10.1038/70487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040306630", 
          "https://doi.org/10.1038/70487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040652873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.11.e50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041183788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.10.e47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042663329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044474103", 
          "https://doi.org/10.1038/4427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044474103", 
          "https://doi.org/10.1038/4427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/332306.332355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049104539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/332306.332355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049104539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670452", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091357", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented.\nRESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques.\nCONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Can Zipf's law be adapted to normalize microarrays?", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50f58fc9898703da849ba1509a4a3b42ad7d19ebe65c9091d06809c7b402be6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15727680"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-37"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016992435"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-37", 
      "https://app.dimensions.ai/details/publication/pub.1016992435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-6-37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-37'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      73 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-37 schema:about N19b4a274d8cb4c65a8b108cce13238c8
2 N391e7267ca80472380725017abb9c784
3 N49e78b006bd447e39e432de99d943ffb
4 N4e70c3b71fc3498bac0ed5bc9aef7940
5 N7ee44204071a49558bbc2cb9da55f7f5
6 N8002e85b78634591990be250e661eace
7 N82eb702d29d5448ea6a99ea62f330d31
8 N8b3a1c0eafaf4807b698e18b3e52a8db
9 N9631dee02b6640ae93194f4b89335daf
10 N99b1a3d9d7574fbd8ee2926018f960c3
11 N9dcb9a29faab4ab9b5a978a6028e29b8
12 Na4cb7ea5ccb74f5f8c635a777005c734
13 Na78b875b1cab4ea18806115f830851af
14 Na8c25e9063eb478cac4b414033adaa5a
15 Na974801c0b3f4038827bcb365a20f20f
16 Naf3e5d833d94438e982d7825aca99799
17 Nb2981c5f559844e7a2cad3208617a90b
18 Nb32130772e5742f9a1b65da67881aef8
19 Nbd862dd8c1184cbbb0979ce1e1ead810
20 Nc7e72461b0e94f62834845206985a78b
21 Ncbe079b728d54e8580417861f4ca9469
22 Nda027f344e344e56b26a37453ad315d1
23 Nef86f4885abf45a7be5203720916c758
24 anzsrc-for:18
25 anzsrc-for:1801
26 schema:author N9ca16719c8d54b97b8a0d9edabf3e231
27 schema:citation sg:pub.10.1038/4427
28 sg:pub.10.1038/4462
29 sg:pub.10.1038/70487
30 sg:pub.10.1038/73432
31 https://app.dimensions.ai/details/publication/pub.1074670452
32 https://app.dimensions.ai/details/publication/pub.1075091357
33 https://doi.org/10.1002/jcb.10073
34 https://doi.org/10.1016/j.crvi.2003.09.031
35 https://doi.org/10.1073/pnas.0306244101
36 https://doi.org/10.1089/10665270050514954
37 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323
38 https://doi.org/10.1093/bioinformatics/18.2.251
39 https://doi.org/10.1093/bioinformatics/18.4.576
40 https://doi.org/10.1093/bioinformatics/19.2.185
41 https://doi.org/10.1093/bioinformatics/btg146
42 https://doi.org/10.1093/nar/28.10.e47
43 https://doi.org/10.1093/nar/30.1.207
44 https://doi.org/10.1093/nar/30.11.e50
45 https://doi.org/10.1093/nar/30.4.e15
46 https://doi.org/10.1103/physrevlett.90.088102
47 https://doi.org/10.1145/332306.332355
48 schema:datePublished 2005-12
49 schema:datePublishedReg 2005-12-01
50 schema:description BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays).
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N360f7e0d5a094cad802b5d7871ace84f
55 Ned4a65889b3c4afca0faa8cf912b6017
56 sg:journal.1023786
57 schema:name Can Zipf's law be adapted to normalize microarrays?
58 schema:pagination 37
59 schema:productId N015f1aa59279465c82f1b640d9324ffe
60 N2ab7869c2ec54ec3bb668319261dc5c7
61 N34dd51bdca214578ba8bc56b4c6c0eae
62 Ne4ddb28a983940a89bb4712f5ce2efe5
63 Nf1c28fed4aa947309618c851371f049a
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016992435
65 https://doi.org/10.1186/1471-2105-6-37
66 schema:sdDatePublished 2019-04-11T09:36
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N82bd9ac9898a4cf5a528a133104dbd57
69 schema:url https://link.springer.com/10.1186%2F1471-2105-6-37
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N015f1aa59279465c82f1b640d9324ffe schema:name pubmed_id
74 schema:value 15727680
75 rdf:type schema:PropertyValue
76 N19b4a274d8cb4c65a8b108cce13238c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Expressed Sequence Tags
78 rdf:type schema:DefinedTerm
79 N2ab7869c2ec54ec3bb668319261dc5c7 schema:name dimensions_id
80 schema:value pub.1016992435
81 rdf:type schema:PropertyValue
82 N34dd51bdca214578ba8bc56b4c6c0eae schema:name nlm_unique_id
83 schema:value 100965194
84 rdf:type schema:PropertyValue
85 N360f7e0d5a094cad802b5d7871ace84f schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 N391e7267ca80472380725017abb9c784 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name RNA
89 rdf:type schema:DefinedTerm
90 N49e78b006bd447e39e432de99d943ffb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Genetic
92 rdf:type schema:DefinedTerm
93 N4e70c3b71fc3498bac0ed5bc9aef7940 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Gene Expression
95 rdf:type schema:DefinedTerm
96 N7783beeb5ffa4359a92e9978e031fe49 rdf:first sg:person.015160067334.49
97 rdf:rest N9794a9922f844db9a297ddc7b27536df
98 N7ee44204071a49558bbc2cb9da55f7f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Gene Expression Regulation
100 rdf:type schema:DefinedTerm
101 N8002e85b78634591990be250e661eace schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Gene Expression Profiling
103 rdf:type schema:DefinedTerm
104 N82bd9ac9898a4cf5a528a133104dbd57 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N82eb702d29d5448ea6a99ea62f330d31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Computational Biology
108 rdf:type schema:DefinedTerm
109 N8b3a1c0eafaf4807b698e18b3e52a8db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Oligonucleotide Array Sequence Analysis
111 rdf:type schema:DefinedTerm
112 N90b2cd39438a40dcb03709e6da9a9e8d rdf:first sg:person.014763407717.68
113 rdf:rest Nb739d779bd354ccd8d9c70e0c591900e
114 N9631dee02b6640ae93194f4b89335daf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Analysis of Variance
116 rdf:type schema:DefinedTerm
117 N9794a9922f844db9a297ddc7b27536df rdf:first sg:person.01333531120.35
118 rdf:rest N90b2cd39438a40dcb03709e6da9a9e8d
119 N99b1a3d9d7574fbd8ee2926018f960c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Models, Statistical
121 rdf:type schema:DefinedTerm
122 N9ca16719c8d54b97b8a0d9edabf3e231 rdf:first sg:person.01011776737.68
123 rdf:rest Nae194bd730c64c159cbf1b54f78abac5
124 N9dcb9a29faab4ab9b5a978a6028e29b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Sequence Analysis, DNA
126 rdf:type schema:DefinedTerm
127 Na4cb7ea5ccb74f5f8c635a777005c734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 Na78b875b1cab4ea18806115f830851af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Rats
132 rdf:type schema:DefinedTerm
133 Na8c25e9063eb478cac4b414033adaa5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Databases, Genetic
135 rdf:type schema:DefinedTerm
136 Na974801c0b3f4038827bcb365a20f20f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Sensitivity and Specificity
138 rdf:type schema:DefinedTerm
139 Nae194bd730c64c159cbf1b54f78abac5 rdf:first sg:person.0732161347.68
140 rdf:rest N7783beeb5ffa4359a92e9978e031fe49
141 Naf3e5d833d94438e982d7825aca99799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Algorithms
143 rdf:type schema:DefinedTerm
144 Nb2981c5f559844e7a2cad3208617a90b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Data Interpretation, Statistical
146 rdf:type schema:DefinedTerm
147 Nb32130772e5742f9a1b65da67881aef8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Likelihood Functions
149 rdf:type schema:DefinedTerm
150 Nb739d779bd354ccd8d9c70e0c591900e rdf:first sg:person.01223143620.01
151 rdf:rest rdf:nil
152 Nbd862dd8c1184cbbb0979ce1e1ead810 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Calibration
154 rdf:type schema:DefinedTerm
155 Nc7e72461b0e94f62834845206985a78b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Regression Analysis
157 rdf:type schema:DefinedTerm
158 Ncbe079b728d54e8580417861f4ca9469 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Computer Simulation
160 rdf:type schema:DefinedTerm
161 Nda027f344e344e56b26a37453ad315d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Animals
163 rdf:type schema:DefinedTerm
164 Ne4ddb28a983940a89bb4712f5ce2efe5 schema:name readcube_id
165 schema:value 50f58fc9898703da849ba1509a4a3b42ad7d19ebe65c9091d06809c7b402be6a
166 rdf:type schema:PropertyValue
167 Ned4a65889b3c4afca0faa8cf912b6017 schema:volumeNumber 6
168 rdf:type schema:PublicationVolume
169 Nef86f4885abf45a7be5203720916c758 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Models, Theoretical
171 rdf:type schema:DefinedTerm
172 Nf1c28fed4aa947309618c851371f049a schema:name doi
173 schema:value 10.1186/1471-2105-6-37
174 rdf:type schema:PropertyValue
175 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
176 schema:name Law and Legal Studies
177 rdf:type schema:DefinedTerm
178 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
179 schema:name Law
180 rdf:type schema:DefinedTerm
181 sg:journal.1023786 schema:issn 1471-2105
182 schema:name BMC Bioinformatics
183 rdf:type schema:Periodical
184 sg:person.01011776737.68 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
185 schema:familyName Lu
186 schema:givenName Tim
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011776737.68
188 rdf:type schema:Person
189 sg:person.01223143620.01 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
190 schema:familyName Schreiber
191 schema:givenName Stefan
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223143620.01
193 rdf:type schema:Person
194 sg:person.01333531120.35 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
195 schema:familyName Häsler
196 schema:givenName Robert
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333531120.35
198 rdf:type schema:Person
199 sg:person.014763407717.68 schema:affiliation https://www.grid.ac/institutes/grid.412468.d
200 schema:familyName Deuschl
201 schema:givenName Günther
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763407717.68
203 rdf:type schema:Person
204 sg:person.015160067334.49 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
205 schema:familyName Croucher
206 schema:givenName Peter JP
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160067334.49
208 rdf:type schema:Person
209 sg:person.0732161347.68 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
210 schema:familyName Costello
211 schema:givenName Christine M
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732161347.68
213 rdf:type schema:Person
214 sg:pub.10.1038/4427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044474103
215 https://doi.org/10.1038/4427
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
218 https://doi.org/10.1038/4462
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/70487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040306630
221 https://doi.org/10.1038/70487
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/73432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024393583
224 https://doi.org/10.1038/73432
225 rdf:type schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1074670452 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1075091357 schema:CreativeWork
228 https://doi.org/10.1002/jcb.10073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014558773
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.crvi.2003.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034340041
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0306244101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009692048
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1089/10665270050514954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204847
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008750939
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/18.2.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009481538
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bioinformatics/18.4.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029899796
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/btg146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040652873
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/28.10.e47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042663329
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/30.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005297170
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/30.11.e50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041183788
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.90.088102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004651533
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1145/332306.332355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049104539
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.412468.d schema:alternateName University Hospital Schleswig-Holstein
259 schema:name Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.7886.1 schema:alternateName University College Dublin
262 schema:name Department of Medicine, Christian-Albrechts-University, Kiel, Germany
263 The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.9764.c schema:alternateName Kiel University
266 schema:name Department of Medicine, Christian-Albrechts-University, Kiel, Germany
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...