Ancestral sequence alignment under optimal conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Alexander K Hudek, Daniel G Brown

ABSTRACT

BACKGROUND: Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. RESULTS: We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. CONCLUSION: We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the success of aligning ancestral sequences containing ambiguity is very sensitive to the choice of gap open cost. Surprisingly, we find that using maximum likelihood to infer ancestral sequences results in less accurate alignments than when using parsimony to infer ancestral sequences. Finally, we find that the sum-of-pairs methods produce better alignments than all of the ancestral alignment methods. More... »

PAGES

273

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-273

DOI

http://dx.doi.org/10.1186/1471-2105-6-273

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009357683

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16293191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "School of Computer Science, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hudek", 
        "givenName": "Alexander K", 
        "id": "sg:person.0702641766.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702641766.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "School of Computer Science, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Daniel G", 
        "id": "sg:person.0642727740.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-39763-2_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001248165", 
          "https://doi.org/10.1007/978-3-540-39763-2_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39763-2_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001248165", 
          "https://doi.org/10.1007/978-3-540-39763-2_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44888-8_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011323716", 
          "https://doi.org/10.1007/3-540-44888-8_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1960404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017077573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.2.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027219082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029047290", 
          "https://doi.org/10.1038/nature01858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029047290", 
          "https://doi.org/10.1038/nature01858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/974614.974626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042583144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.926603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043392725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jhered/92.2.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049977971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053411057", 
          "https://doi.org/10.1007/978-3-540-30219-3_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053411057", 
          "https://doi.org/10.1007/978-3-540-30219-3_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058609802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701753307511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences.\nRESULTS: We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang.\nCONCLUSION: We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the success of aligning ancestral sequences containing ambiguity is very sensitive to the choice of gap open cost. Surprisingly, we find that using maximum likelihood to infer ancestral sequences results in less accurate alignments than when using parsimony to infer ancestral sequences. Finally, we find that the sum-of-pairs methods produce better alignments than all of the ancestral alignment methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-273", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Ancestral sequence alignment under optimal conditions", 
    "pagination": "273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c93d114a1df39e814eabcbde95f5ee1e355877d12598bac4e1447b71d417cb9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16293191"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-273"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009357683"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-273", 
      "https://app.dimensions.ai/details/publication/pub.1009357683"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-6-273"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-273'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-273'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-273'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-273'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      51 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-273 schema:about N32f378d3073c48d4b3b8b9248c01fabc
2 N49032e007d7242c2b6e430163e6ee518
3 N7dc14df5a245417e938bef3c94e477f6
4 N9c98612ff06343f48694c090839c1d12
5 N9dac3d663f3441418f3ba5adb2d437f5
6 Ncc014ae511144e388ea4fb87ca97ba23
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N17ce9ab78249488ea88b628fa8829897
10 schema:citation sg:pub.10.1007/3-540-44888-8_19
11 sg:pub.10.1007/978-3-540-30219-3_27
12 sg:pub.10.1007/978-3-540-39763-2_14
13 sg:pub.10.1007/bf02603120
14 sg:pub.10.1038/nature01858
15 https://doi.org/10.1016/0022-2836(70)90057-4
16 https://doi.org/10.1016/0022-2836(82)90398-9
17 https://doi.org/10.1086/302218
18 https://doi.org/10.1089/106652701753307511
19 https://doi.org/10.1093/bioinformatics/14.2.157
20 https://doi.org/10.1093/jhered/92.2.212
21 https://doi.org/10.1093/nar/22.22.4673
22 https://doi.org/10.1101/gr.1960404
23 https://doi.org/10.1101/gr.926603
24 https://doi.org/10.1145/974614.974626
25 https://doi.org/10.2307/2412116
26 schema:datePublished 2005-12
27 schema:datePublishedReg 2005-12-01
28 schema:description BACKGROUND: Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. RESULTS: We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. CONCLUSION: We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the success of aligning ancestral sequences containing ambiguity is very sensitive to the choice of gap open cost. Surprisingly, we find that using maximum likelihood to infer ancestral sequences results in less accurate alignments than when using parsimony to infer ancestral sequences. Finally, we find that the sum-of-pairs methods produce better alignments than all of the ancestral alignment methods.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N45d125ef345340c3be40edef643a02c4
33 Nd6c25001ad594e6c82661e0ee03e64ae
34 sg:journal.1023786
35 schema:name Ancestral sequence alignment under optimal conditions
36 schema:pagination 273
37 schema:productId N10494915d4b44e3cb08ed5377031243f
38 N31dcaf92b0d0468ea5ca94bf32cb1645
39 N9c6171a0da75408db43e7382071e26f5
40 Nde45ecbf0f1946d6924f4ffc8823b39e
41 Nfaa052765f464dcf8052bd8a16d9c081
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009357683
43 https://doi.org/10.1186/1471-2105-6-273
44 schema:sdDatePublished 2019-04-11T09:50
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Na121277765354ff19e5aa7b1e2c14d68
47 schema:url https://link.springer.com/10.1186%2F1471-2105-6-273
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N10494915d4b44e3cb08ed5377031243f schema:name nlm_unique_id
52 schema:value 100965194
53 rdf:type schema:PropertyValue
54 N17ce9ab78249488ea88b628fa8829897 rdf:first sg:person.0702641766.21
55 rdf:rest N3a50ff60eb124d02975bd14f183b8b1c
56 N31dcaf92b0d0468ea5ca94bf32cb1645 schema:name readcube_id
57 schema:value 2c93d114a1df39e814eabcbde95f5ee1e355877d12598bac4e1447b71d417cb9
58 rdf:type schema:PropertyValue
59 N32f378d3073c48d4b3b8b9248c01fabc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Sequence Alignment
61 rdf:type schema:DefinedTerm
62 N3a50ff60eb124d02975bd14f183b8b1c rdf:first sg:person.0642727740.54
63 rdf:rest rdf:nil
64 N45d125ef345340c3be40edef643a02c4 schema:volumeNumber 6
65 rdf:type schema:PublicationVolume
66 N49032e007d7242c2b6e430163e6ee518 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Phylogeny
68 rdf:type schema:DefinedTerm
69 N7dc14df5a245417e938bef3c94e477f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Likelihood Functions
71 rdf:type schema:DefinedTerm
72 N9c6171a0da75408db43e7382071e26f5 schema:name doi
73 schema:value 10.1186/1471-2105-6-273
74 rdf:type schema:PropertyValue
75 N9c98612ff06343f48694c090839c1d12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Models, Molecular
77 rdf:type schema:DefinedTerm
78 N9dac3d663f3441418f3ba5adb2d437f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Evolution, Molecular
80 rdf:type schema:DefinedTerm
81 Na121277765354ff19e5aa7b1e2c14d68 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Ncc014ae511144e388ea4fb87ca97ba23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Data Interpretation, Statistical
85 rdf:type schema:DefinedTerm
86 Nd6c25001ad594e6c82661e0ee03e64ae schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Nde45ecbf0f1946d6924f4ffc8823b39e schema:name dimensions_id
89 schema:value pub.1009357683
90 rdf:type schema:PropertyValue
91 Nfaa052765f464dcf8052bd8a16d9c081 schema:name pubmed_id
92 schema:value 16293191
93 rdf:type schema:PropertyValue
94 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biological Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
98 schema:name Genetics
99 rdf:type schema:DefinedTerm
100 sg:journal.1023786 schema:issn 1471-2105
101 schema:name BMC Bioinformatics
102 rdf:type schema:Periodical
103 sg:person.0642727740.54 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
104 schema:familyName Brown
105 schema:givenName Daniel G
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54
107 rdf:type schema:Person
108 sg:person.0702641766.21 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
109 schema:familyName Hudek
110 schema:givenName Alexander K
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702641766.21
112 rdf:type schema:Person
113 sg:pub.10.1007/3-540-44888-8_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011323716
114 https://doi.org/10.1007/3-540-44888-8_19
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-540-30219-3_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053411057
117 https://doi.org/10.1007/978-3-540-30219-3_27
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-540-39763-2_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248165
120 https://doi.org/10.1007/978-3-540-39763-2_14
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf02603120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962956
123 https://doi.org/10.1007/bf02603120
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature01858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029047290
126 https://doi.org/10.1038/nature01858
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1086/302218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609802
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1089/106652701753307511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204911
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/bioinformatics/14.2.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027219082
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/jhered/92.2.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049977971
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1101/gr.1960404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017077573
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1101/gr.926603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043392725
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/974614.974626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042583144
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2307/2412116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920601
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
151 schema:name School of Computer Science, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...