Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Shugo Hamahashi, Shuichi Onami, Hiroaki Kitano

ABSTRACT

BACKGROUND: The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. RESULTS: We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. CONCLUSION: A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos. More... »

PAGES

125

References to SciGraph publications

  • 2002-12. Creating new fluorescent probes for cell biology in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-6-125

    DOI

    http://dx.doi.org/10.1186/1471-2105-6-125

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047109243

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15910690


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Division", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Nucleus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Entropy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Information Storage and Retrieval", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Interference", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "User-Computer Interface", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Japan Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan", 
                "Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan", 
                "Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda, 102-0081, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamahashi", 
            "givenName": "Shugo", 
            "id": "sg:person.01342225664.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342225664.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan", 
                "Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan", 
                "Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda, 102-0081, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Onami", 
            "givenName": "Shuichi", 
            "id": "sg:person.01065410562.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065410562.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sony Computer Science Laboratories", 
              "id": "https://www.grid.ac/institutes/grid.452725.3", 
              "name": [
                "Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan", 
                "Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan", 
                "Sony Computer Science Laboratories, Inc., 3-14-13 Higashi-Gotanda, 141-0022, Shinagawa, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitano", 
            "givenName": "Hiroaki", 
            "id": "sg:person.01355755204.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0006-3495(87)83271-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001295862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5331.1453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003267570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/dbio.2002.0631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012737841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.121.6.1343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015651238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(03)75087-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016057332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.devcel.2005.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023697828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-1606(83)90201-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024819784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(99)00032-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024956424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)00015-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025640188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.88.14.6274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028964400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4809(71)90034-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037054271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4809(71)90034-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037054271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042099817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1091/mbc.12.6.1751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042697069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042805607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/dbio.1997.8509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044080643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.11.1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044762817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046935422", 
              "https://doi.org/10.1038/nrm976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046935422", 
              "https://doi.org/10.1038/nrm976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/bbrc.1999.0954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047904736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpe.4330020404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051968642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1361-6374(199406)2:2<98::aid-bio4>3.3.co;2-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054249646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2321027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062532641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5275.603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.282.5396.2012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062563514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josaa.16.002185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065158971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074726161", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074780081", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1986.tb04550.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077183865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080300025", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083083599", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/metal/195552020121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084142658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812384737_0007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088714000"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-12", 
        "datePublishedReg": "2005-12-01", 
        "description": "BACKGROUND: The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages.\nRESULTS: We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages.\nCONCLUSION: A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-6-125", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking", 
        "pagination": "125", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e069ee1132d3e13698d367a86eb6c1fe0bcaee99e71907b134c60dfcc7b6d96e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15910690"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-6-125"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047109243"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-6-125", 
          "https://app.dimensions.ai/details/publication/pub.1047109243"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2105-6-125"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-125'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-125'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-125'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-125'


     

    This table displays all metadata directly associated to this object as RDF triples.

    243 TRIPLES      21 PREDICATES      76 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-6-125 schema:about N0a1cf7ff1f1a4b2a9d31e0483f093715
    2 N1339ebc8f4e149e3a02e07fc334d7496
    3 N1e2751bc0ccf46699b0e28055b583896
    4 N319f92fbf75e4ac5a48d5dcb176b47cf
    5 N3f768167ae3a484f9f609509ea24fc6b
    6 N44936bc0e9c7412f9137678d49f1bb20
    7 N908f00fe826c4a8289e83390803ceadb
    8 N9badba26c54a47d2b99cba3b2fe6648a
    9 Nadefcb49d05549cf86635df8144d391d
    10 Nb36416596f684c8e91c8643fa224012b
    11 Nc5a7ff57db65459c8c9bc84275fe0755
    12 Nc652eb2112cd4377988978bbf5e4c2c5
    13 Nc7a01ca95ff544b0a848a7ef8d3dae6b
    14 Ne5d311ff95fd46aabe44fa6b46c5ee59
    15 Nf21a40f597ae4f05adf2516d00cd5a3b
    16 Nf74b3b9b1fe243d3b75788ff4661f7ab
    17 anzsrc-for:08
    18 anzsrc-for:0801
    19 schema:author N6b32ee5b52074452bebbd47dddb3ec9d
    20 schema:citation sg:pub.10.1038/nrm976
    21 https://app.dimensions.ai/details/publication/pub.1074726161
    22 https://app.dimensions.ai/details/publication/pub.1074780081
    23 https://app.dimensions.ai/details/publication/pub.1080300025
    24 https://app.dimensions.ai/details/publication/pub.1083083599
    25 https://doi.org/10.1002/1361-6374(199406)2:2<98::aid-bio4>3.3.co;2-x
    26 https://doi.org/10.1002/cpe.4330020404
    27 https://doi.org/10.1002/j.1460-2075.1986.tb04550.x
    28 https://doi.org/10.1006/bbrc.1999.0954
    29 https://doi.org/10.1006/dbio.1997.8509
    30 https://doi.org/10.1006/dbio.2002.0631
    31 https://doi.org/10.1016/0010-4809(71)90034-6
    32 https://doi.org/10.1016/0012-1606(83)90201-4
    33 https://doi.org/10.1016/j.devcel.2005.03.007
    34 https://doi.org/10.1016/s0006-3495(03)75087-5
    35 https://doi.org/10.1016/s0006-3495(87)83271-x
    36 https://doi.org/10.1016/s0092-8674(00)00015-5
    37 https://doi.org/10.1016/s0262-8856(99)00032-3
    38 https://doi.org/10.1051/metal/195552020121
    39 https://doi.org/10.1073/pnas.88.14.6274
    40 https://doi.org/10.1083/jcb.121.6.1343
    41 https://doi.org/10.1091/mbc.12.6.1751
    42 https://doi.org/10.1093/bioinformatics/18.11.1486
    43 https://doi.org/10.1093/bioinformatics/btg087
    44 https://doi.org/10.1109/tsmc.1979.4310076
    45 https://doi.org/10.1126/science.2321027
    46 https://doi.org/10.1126/science.273.5275.603
    47 https://doi.org/10.1126/science.277.5331.1453
    48 https://doi.org/10.1126/science.282.5396.2012
    49 https://doi.org/10.1142/9789812384737_0007
    50 https://doi.org/10.1364/josaa.16.002185
    51 schema:datePublished 2005-12
    52 schema:datePublishedReg 2005-12-01
    53 schema:description BACKGROUND: The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. RESULTS: We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. CONCLUSION: A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree true
    57 schema:isPartOf N207a68239d8947358fc3889eb792bd38
    58 N700ab405d2d549d687a5a4926d6e923c
    59 sg:journal.1023786
    60 schema:name Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking
    61 schema:pagination 125
    62 schema:productId N141baeac34cb4f4fb4d724b79570e6e3
    63 N4aad65852105462799dbe6759e5ae926
    64 N5b303d600ad040e689e0e388ef839d72
    65 N9b5832aa0a3a4fa686eede0fd05f5592
    66 Nb561e213eb1045ccafbc734e41b9daa5
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047109243
    68 https://doi.org/10.1186/1471-2105-6-125
    69 schema:sdDatePublished 2019-04-10T20:53
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N8daa1ef8551445738cca1909ace43732
    72 schema:url http://link.springer.com/10.1186%2F1471-2105-6-125
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0a1cf7ff1f1a4b2a9d31e0483f093715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Time Factors
    78 rdf:type schema:DefinedTerm
    79 N1339ebc8f4e149e3a02e07fc334d7496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Image Processing, Computer-Assisted
    81 rdf:type schema:DefinedTerm
    82 N141baeac34cb4f4fb4d724b79570e6e3 schema:name readcube_id
    83 schema:value e069ee1132d3e13698d367a86eb6c1fe0bcaee99e71907b134c60dfcc7b6d96e
    84 rdf:type schema:PropertyValue
    85 N1e2751bc0ccf46699b0e28055b583896 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Sensitivity and Specificity
    87 rdf:type schema:DefinedTerm
    88 N207a68239d8947358fc3889eb792bd38 schema:volumeNumber 6
    89 rdf:type schema:PublicationVolume
    90 N319f92fbf75e4ac5a48d5dcb176b47cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Algorithms
    92 rdf:type schema:DefinedTerm
    93 N3f768167ae3a484f9f609509ea24fc6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Software
    95 rdf:type schema:DefinedTerm
    96 N44936bc0e9c7412f9137678d49f1bb20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Entropy
    98 rdf:type schema:DefinedTerm
    99 N4aad65852105462799dbe6759e5ae926 schema:name nlm_unique_id
    100 schema:value 100965194
    101 rdf:type schema:PropertyValue
    102 N5052b51084274b74ac7deb8fc165ddd4 rdf:first sg:person.01065410562.04
    103 rdf:rest N63dd8093971d459a9a416208e64adf97
    104 N5b303d600ad040e689e0e388ef839d72 schema:name dimensions_id
    105 schema:value pub.1047109243
    106 rdf:type schema:PropertyValue
    107 N63dd8093971d459a9a416208e64adf97 rdf:first sg:person.01355755204.11
    108 rdf:rest rdf:nil
    109 N6b32ee5b52074452bebbd47dddb3ec9d rdf:first sg:person.01342225664.52
    110 rdf:rest N5052b51084274b74ac7deb8fc165ddd4
    111 N700ab405d2d549d687a5a4926d6e923c schema:issueNumber 1
    112 rdf:type schema:PublicationIssue
    113 N8daa1ef8551445738cca1909ace43732 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 N908f00fe826c4a8289e83390803ceadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Caenorhabditis elegans
    117 rdf:type schema:DefinedTerm
    118 N9b5832aa0a3a4fa686eede0fd05f5592 schema:name doi
    119 schema:value 10.1186/1471-2105-6-125
    120 rdf:type schema:PropertyValue
    121 N9badba26c54a47d2b99cba3b2fe6648a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Cell Nucleus
    123 rdf:type schema:DefinedTerm
    124 Nadefcb49d05549cf86635df8144d391d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name User-Computer Interface
    126 rdf:type schema:DefinedTerm
    127 Nb36416596f684c8e91c8643fa224012b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Information Storage and Retrieval
    129 rdf:type schema:DefinedTerm
    130 Nb561e213eb1045ccafbc734e41b9daa5 schema:name pubmed_id
    131 schema:value 15910690
    132 rdf:type schema:PropertyValue
    133 Nc5a7ff57db65459c8c9bc84275fe0755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Image Interpretation, Computer-Assisted
    135 rdf:type schema:DefinedTerm
    136 Nc652eb2112cd4377988978bbf5e4c2c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Cell Division
    138 rdf:type schema:DefinedTerm
    139 Nc7a01ca95ff544b0a848a7ef8d3dae6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Microscopy, Interference
    141 rdf:type schema:DefinedTerm
    142 Ne5d311ff95fd46aabe44fa6b46c5ee59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Computational Biology
    144 rdf:type schema:DefinedTerm
    145 Nf21a40f597ae4f05adf2516d00cd5a3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Animals
    147 rdf:type schema:DefinedTerm
    148 Nf74b3b9b1fe243d3b75788ff4661f7ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Caenorhabditis elegans Proteins
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Information and Computing Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Artificial Intelligence and Image Processing
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1023786 schema:issn 1471-2105
    158 schema:name BMC Bioinformatics
    159 rdf:type schema:Periodical
    160 sg:person.01065410562.04 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
    161 schema:familyName Onami
    162 schema:givenName Shuichi
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065410562.04
    164 rdf:type schema:Person
    165 sg:person.01342225664.52 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
    166 schema:familyName Hamahashi
    167 schema:givenName Shugo
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342225664.52
    169 rdf:type schema:Person
    170 sg:person.01355755204.11 schema:affiliation https://www.grid.ac/institutes/grid.452725.3
    171 schema:familyName Kitano
    172 schema:givenName Hiroaki
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11
    174 rdf:type schema:Person
    175 sg:pub.10.1038/nrm976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046935422
    176 https://doi.org/10.1038/nrm976
    177 rdf:type schema:CreativeWork
    178 https://app.dimensions.ai/details/publication/pub.1074726161 schema:CreativeWork
    179 https://app.dimensions.ai/details/publication/pub.1074780081 schema:CreativeWork
    180 https://app.dimensions.ai/details/publication/pub.1080300025 schema:CreativeWork
    181 https://app.dimensions.ai/details/publication/pub.1083083599 schema:CreativeWork
    182 https://doi.org/10.1002/1361-6374(199406)2:2<98::aid-bio4>3.3.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054249646
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/cpe.4330020404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051968642
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1002/j.1460-2075.1986.tb04550.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077183865
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1006/bbrc.1999.0954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047904736
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1006/dbio.1997.8509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044080643
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1006/dbio.2002.0631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012737841
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/0010-4809(71)90034-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037054271
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/0012-1606(83)90201-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024819784
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.devcel.2005.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023697828
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/s0006-3495(03)75087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016057332
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/s0006-3495(87)83271-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001295862
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/s0092-8674(00)00015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025640188
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/s0262-8856(99)00032-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024956424
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1051/metal/195552020121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084142658
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1073/pnas.88.14.6274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028964400
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1083/jcb.121.6.1343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015651238
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1091/mbc.12.6.1751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042697069
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1093/bioinformatics/18.11.1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044762817
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1093/bioinformatics/btg087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042099817
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1126/science.2321027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532641
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1126/science.273.5275.603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553750
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1126/science.277.5331.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003267570
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1126/science.282.5396.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563514
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1142/9789812384737_0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088714000
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1364/josaa.16.002185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065158971
    233 rdf:type schema:CreativeWork
    234 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
    235 schema:name Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan
    236 Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda, 102-0081, Tokyo, Japan
    237 Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan
    238 rdf:type schema:Organization
    239 https://www.grid.ac/institutes/grid.452725.3 schema:alternateName Sony Computer Science Laboratories
    240 schema:name Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan
    241 Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan
    242 Sony Computer Science Laboratories, Inc., 3-14-13 Higashi-Gotanda, 141-0022, Shinagawa, Tokyo, Japan
    243 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...