Scoredist: A simple and robust protein sequence distance estimator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Erik LL Sonnhammer, Volker Hollich

ABSTRACT

BACKGROUND: Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used. RESULTS: We propose a correction-based protein sequence estimator called Scoredist. It uses a logarithmic correction of observed divergence based on the alignment score according to the BLOSUM62 score matrix. We evaluated Scoredist and a number of optimal matrix methods using three evolutionary models for both training and testing Dayhoff, Jones-Taylor-Thornton, and Muller-Vingron, as well as Whelan and Goldman solely for testing. Test alignments with known distances between 0.01 and 2 substitutions per position (1-200 PAM) were simulated using ROSE. Scoredist proved as accurate as the optimal matrix methods, yet substantially more robust. When trained on one model but tested on another one, Scoredist was nearly always more accurate. The Jukes-Cantor and Kimura correction methods were also tested, but were substantially less accurate. CONCLUSION: The Scoredist distance estimator is fast to implement and run, and combines robustness with accuracy. Scoredist has been incorporated into the Belvu alignment viewer, which is available at ftp://ftp.cgb.ki.se/pub/prog/belvu/. More... »

PAGES

108

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-108

DOI

http://dx.doi.org/10.1186/1471-2105-6-108

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037048502

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15857510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius v\u00e4g 35, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sonnhammer", 
        "givenName": "Erik LL", 
        "id": "sg:person.01215262030.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215262030.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius v\u00e4g 35, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hollich", 
        "givenName": "Volker", 
        "id": "sg:person.01004132464.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004132464.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002974679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.22.10915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016180325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.2.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027219082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030815736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.9.1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032929124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.1.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032953758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035839794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-3-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041450232", 
          "https://doi.org/10.1186/1471-2105-3-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1996.3.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/8.3.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used.\nRESULTS: We propose a correction-based protein sequence estimator called Scoredist. It uses a logarithmic correction of observed divergence based on the alignment score according to the BLOSUM62 score matrix. We evaluated Scoredist and a number of optimal matrix methods using three evolutionary models for both training and testing Dayhoff, Jones-Taylor-Thornton, and Muller-Vingron, as well as Whelan and Goldman solely for testing. Test alignments with known distances between 0.01 and 2 substitutions per position (1-200 PAM) were simulated using ROSE. Scoredist proved as accurate as the optimal matrix methods, yet substantially more robust. When trained on one model but tested on another one, Scoredist was nearly always more accurate. The Jukes-Cantor and Kimura correction methods were also tested, but were substantially less accurate.\nCONCLUSION: The Scoredist distance estimator is fast to implement and run, and combines robustness with accuracy. Scoredist has been incorporated into the Belvu alignment viewer, which is available at ftp://ftp.cgb.ki.se/pub/prog/belvu/.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-108", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Scoredist: A simple and robust protein sequence distance estimator", 
    "pagination": "108", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b07c577cd35460fec0e25c60f2ef63a44fcc77cb1fd3cc2a5b2822aa337811d1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15857510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-108"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037048502"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-108", 
      "https://app.dimensions.ai/details/publication/pub.1037048502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-6-108"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-108 schema:about N0769a00acb3b4575a5640c3c0cc63d60
2 N151559d18af24c61a7d3a871dd0d0971
3 N502454b2813a468cb6163732b9192508
4 N5367cdd88c0e4d0cbd18d8ce2ac0b597
5 N593b3afbe60c458097c8fbb65719fd05
6 N7d759defdaf74a1682dbc79dbfe4e2d9
7 N89aa99d0fc9a4bef85a75431858255ee
8 N8c0afefbf8444493a2b1175316354558
9 N8c40315b65fd473fa1ecbe37ad64f209
10 N9523472e321640e1a97d43789eebd443
11 Nb272c3d7bce5450ea8f30972be195743
12 Nba89ce0a43824e6c8ab10f330fdbb873
13 Nc12d5e26dde54b2da67229c74375061d
14 Nd2e30f86c1814b61ba4fad90ae7bee05
15 Ne27bfac361db467dbbb440be6979686e
16 Ne6b4628995674b90967ea2f6112d94ef
17 anzsrc-for:01
18 anzsrc-for:0104
19 schema:author N6101d763d679465ba6f5c9a12a003605
20 schema:citation sg:pub.10.1186/1471-2105-3-14
21 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
22 https://doi.org/10.1073/pnas.89.22.10915
23 https://doi.org/10.1089/10665270050514918
24 https://doi.org/10.1089/cmb.1996.3.1
25 https://doi.org/10.1093/bioinformatics/14.2.157
26 https://doi.org/10.1093/bioinformatics/18.1.92
27 https://doi.org/10.1093/bioinformatics/18.9.1272
28 https://doi.org/10.1093/bioinformatics/8.3.275
29 https://doi.org/10.1093/oxfordjournals.molbev.a003851
30 https://doi.org/10.1093/oxfordjournals.molbev.a025808
31 https://doi.org/10.1093/oxfordjournals.molbev.a026231
32 https://doi.org/10.1093/oxfordjournals.molbev.a040454
33 schema:datePublished 2005-12
34 schema:datePublishedReg 2005-12-01
35 schema:description BACKGROUND: Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used. RESULTS: We propose a correction-based protein sequence estimator called Scoredist. It uses a logarithmic correction of observed divergence based on the alignment score according to the BLOSUM62 score matrix. We evaluated Scoredist and a number of optimal matrix methods using three evolutionary models for both training and testing Dayhoff, Jones-Taylor-Thornton, and Muller-Vingron, as well as Whelan and Goldman solely for testing. Test alignments with known distances between 0.01 and 2 substitutions per position (1-200 PAM) were simulated using ROSE. Scoredist proved as accurate as the optimal matrix methods, yet substantially more robust. When trained on one model but tested on another one, Scoredist was nearly always more accurate. The Jukes-Cantor and Kimura correction methods were also tested, but were substantially less accurate. CONCLUSION: The Scoredist distance estimator is fast to implement and run, and combines robustness with accuracy. Scoredist has been incorporated into the Belvu alignment viewer, which is available at ftp://ftp.cgb.ki.se/pub/prog/belvu/.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N0c534917eb0f474dbdc73fb9dade6b6c
40 Nd6a439207670479bbef9ab6f119fa748
41 sg:journal.1023786
42 schema:name Scoredist: A simple and robust protein sequence distance estimator
43 schema:pagination 108
44 schema:productId N0d38820ac8bd4bee8e1b71be5a6ae890
45 N2b9afaedbad94ab4849f18ba5725e322
46 N4ed5d878021f40779a3027583a19dddb
47 N69ffbb81aaf741f587e0ca6f7c4ee0a1
48 Nc9fca425022645a39ac93337909fa86d
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037048502
50 https://doi.org/10.1186/1471-2105-6-108
51 schema:sdDatePublished 2019-04-10T19:07
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N2d96d3d4bbc148ab833ee06439db7955
54 schema:url http://link.springer.com/10.1186%2F1471-2105-6-108
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0769a00acb3b4575a5640c3c0cc63d60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Calibration
60 rdf:type schema:DefinedTerm
61 N0c534917eb0f474dbdc73fb9dade6b6c schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N0d38820ac8bd4bee8e1b71be5a6ae890 schema:name nlm_unique_id
64 schema:value 100965194
65 rdf:type schema:PropertyValue
66 N151559d18af24c61a7d3a871dd0d0971 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Molecular Sequence Data
68 rdf:type schema:DefinedTerm
69 N2b9afaedbad94ab4849f18ba5725e322 schema:name readcube_id
70 schema:value b07c577cd35460fec0e25c60f2ef63a44fcc77cb1fd3cc2a5b2822aa337811d1
71 rdf:type schema:PropertyValue
72 N2d96d3d4bbc148ab833ee06439db7955 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N4ed5d878021f40779a3027583a19dddb schema:name pubmed_id
75 schema:value 15857510
76 rdf:type schema:PropertyValue
77 N502454b2813a468cb6163732b9192508 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Sequence Homology, Amino Acid
79 rdf:type schema:DefinedTerm
80 N5367cdd88c0e4d0cbd18d8ce2ac0b597 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Monte Carlo Method
82 rdf:type schema:DefinedTerm
83 N593b3afbe60c458097c8fbb65719fd05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Algorithms
85 rdf:type schema:DefinedTerm
86 N6101d763d679465ba6f5c9a12a003605 rdf:first sg:person.01215262030.04
87 rdf:rest N7c4279bc05464259af411c54b74f661e
88 N69ffbb81aaf741f587e0ca6f7c4ee0a1 schema:name doi
89 schema:value 10.1186/1471-2105-6-108
90 rdf:type schema:PropertyValue
91 N7c4279bc05464259af411c54b74f661e rdf:first sg:person.01004132464.62
92 rdf:rest rdf:nil
93 N7d759defdaf74a1682dbc79dbfe4e2d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Models, Statistical
95 rdf:type schema:DefinedTerm
96 N89aa99d0fc9a4bef85a75431858255ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Amino Acid Sequence
98 rdf:type schema:DefinedTerm
99 N8c0afefbf8444493a2b1175316354558 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Likelihood Functions
101 rdf:type schema:DefinedTerm
102 N8c40315b65fd473fa1ecbe37ad64f209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Software
104 rdf:type schema:DefinedTerm
105 N9523472e321640e1a97d43789eebd443 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Evolution, Molecular
107 rdf:type schema:DefinedTerm
108 Nb272c3d7bce5450ea8f30972be195743 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Biological Evolution
110 rdf:type schema:DefinedTerm
111 Nba89ce0a43824e6c8ab10f330fdbb873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Pattern Recognition, Automated
113 rdf:type schema:DefinedTerm
114 Nc12d5e26dde54b2da67229c74375061d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Phylogeny
116 rdf:type schema:DefinedTerm
117 Nc9fca425022645a39ac93337909fa86d schema:name dimensions_id
118 schema:value pub.1037048502
119 rdf:type schema:PropertyValue
120 Nd2e30f86c1814b61ba4fad90ae7bee05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Computer Simulation
122 rdf:type schema:DefinedTerm
123 Nd6a439207670479bbef9ab6f119fa748 schema:volumeNumber 6
124 rdf:type schema:PublicationVolume
125 Ne27bfac361db467dbbb440be6979686e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Computational Biology
127 rdf:type schema:DefinedTerm
128 Ne6b4628995674b90967ea2f6112d94ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Sequence Analysis, Protein
130 rdf:type schema:DefinedTerm
131 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
132 schema:name Mathematical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
135 schema:name Statistics
136 rdf:type schema:DefinedTerm
137 sg:journal.1023786 schema:issn 1471-2105
138 schema:name BMC Bioinformatics
139 rdf:type schema:Periodical
140 sg:person.01004132464.62 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
141 schema:familyName Hollich
142 schema:givenName Volker
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004132464.62
144 rdf:type schema:Person
145 sg:person.01215262030.04 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
146 schema:familyName Sonnhammer
147 schema:givenName Erik LL
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215262030.04
149 rdf:type schema:Person
150 sg:pub.10.1186/1471-2105-3-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041450232
151 https://doi.org/10.1186/1471-2105-3-14
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.89.22.10915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234644
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1089/10665270050514918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204843
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1089/cmb.1996.3.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245127
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/14.2.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027219082
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/18.1.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032953758
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/18.9.1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032929124
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/8.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414153
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/oxfordjournals.molbev.a003851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002974679
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/oxfordjournals.molbev.a025808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035839794
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/oxfordjournals.molbev.a026231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030815736
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
178 schema:name Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...