Scoredist: A simple and robust protein sequence distance estimator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Erik LL Sonnhammer, Volker Hollich

ABSTRACT

BACKGROUND: Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used. RESULTS: We propose a correction-based protein sequence estimator called Scoredist. It uses a logarithmic correction of observed divergence based on the alignment score according to the BLOSUM62 score matrix. We evaluated Scoredist and a number of optimal matrix methods using three evolutionary models for both training and testing Dayhoff, Jones-Taylor-Thornton, and Muller-Vingron, as well as Whelan and Goldman solely for testing. Test alignments with known distances between 0.01 and 2 substitutions per position (1-200 PAM) were simulated using ROSE. Scoredist proved as accurate as the optimal matrix methods, yet substantially more robust. When trained on one model but tested on another one, Scoredist was nearly always more accurate. The Jukes-Cantor and Kimura correction methods were also tested, but were substantially less accurate. CONCLUSION: The Scoredist distance estimator is fast to implement and run, and combines robustness with accuracy. Scoredist has been incorporated into the Belvu alignment viewer, which is available at ftp://ftp.cgb.ki.se/pub/prog/belvu/. More... »

PAGES

108

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-108

DOI

http://dx.doi.org/10.1186/1471-2105-6-108

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037048502

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15857510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius v\u00e4g 35, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sonnhammer", 
        "givenName": "Erik LL", 
        "id": "sg:person.01215262030.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215262030.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius v\u00e4g 35, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hollich", 
        "givenName": "Volker", 
        "id": "sg:person.01004132464.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004132464.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002974679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.22.10915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016180325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.2.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027219082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030815736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.9.1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032929124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.1.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032953758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035839794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-3-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041450232", 
          "https://doi.org/10.1186/1471-2105-3-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1996.3.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/8.3.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used.\nRESULTS: We propose a correction-based protein sequence estimator called Scoredist. It uses a logarithmic correction of observed divergence based on the alignment score according to the BLOSUM62 score matrix. We evaluated Scoredist and a number of optimal matrix methods using three evolutionary models for both training and testing Dayhoff, Jones-Taylor-Thornton, and Muller-Vingron, as well as Whelan and Goldman solely for testing. Test alignments with known distances between 0.01 and 2 substitutions per position (1-200 PAM) were simulated using ROSE. Scoredist proved as accurate as the optimal matrix methods, yet substantially more robust. When trained on one model but tested on another one, Scoredist was nearly always more accurate. The Jukes-Cantor and Kimura correction methods were also tested, but were substantially less accurate.\nCONCLUSION: The Scoredist distance estimator is fast to implement and run, and combines robustness with accuracy. Scoredist has been incorporated into the Belvu alignment viewer, which is available at ftp://ftp.cgb.ki.se/pub/prog/belvu/.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-108", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Scoredist: A simple and robust protein sequence distance estimator", 
    "pagination": "108", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b07c577cd35460fec0e25c60f2ef63a44fcc77cb1fd3cc2a5b2822aa337811d1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15857510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-108"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037048502"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-108", 
      "https://app.dimensions.ai/details/publication/pub.1037048502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-6-108"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-108'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-108 schema:about N019961636f234a9d97159e97af2dd096
2 N0acc53a7e990458a83a4c730c0485545
3 N0d5151f3872644dbb5ada2ec9fabfa4e
4 N14342b0698144dbfaeec9a459cf645d8
5 N1b8d4bf33c72485e92de8bff04b164da
6 N23312c808ff146c699696c10909d8ec9
7 N266abeff4166451cb7102d9ba38f1de3
8 N30914ab75abc4f8a96a78f533f9d7595
9 N62e286a7a19348448901b73c0a6d96c9
10 N765fd612ba7a4bd2921c07f2946543cc
11 N95b687297bbb4a09915613a1a85b5cc0
12 N95d4faae59084f05aa5fdbc23b309e7f
13 N965b2418e4644e4e879109850b4cf831
14 Na87bf80bace941c291707425a2b8e93a
15 Nbeebfd804a03472da0c236eb218c46cb
16 Nd82cd9cf1d2f4eb7ac7a35d17eb6dedd
17 anzsrc-for:01
18 anzsrc-for:0104
19 schema:author Nfc33204d88c8446aa765153b668edaa1
20 schema:citation sg:pub.10.1186/1471-2105-3-14
21 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
22 https://doi.org/10.1073/pnas.89.22.10915
23 https://doi.org/10.1089/10665270050514918
24 https://doi.org/10.1089/cmb.1996.3.1
25 https://doi.org/10.1093/bioinformatics/14.2.157
26 https://doi.org/10.1093/bioinformatics/18.1.92
27 https://doi.org/10.1093/bioinformatics/18.9.1272
28 https://doi.org/10.1093/bioinformatics/8.3.275
29 https://doi.org/10.1093/oxfordjournals.molbev.a003851
30 https://doi.org/10.1093/oxfordjournals.molbev.a025808
31 https://doi.org/10.1093/oxfordjournals.molbev.a026231
32 https://doi.org/10.1093/oxfordjournals.molbev.a040454
33 schema:datePublished 2005-12
34 schema:datePublishedReg 2005-12-01
35 schema:description BACKGROUND: Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used. RESULTS: We propose a correction-based protein sequence estimator called Scoredist. It uses a logarithmic correction of observed divergence based on the alignment score according to the BLOSUM62 score matrix. We evaluated Scoredist and a number of optimal matrix methods using three evolutionary models for both training and testing Dayhoff, Jones-Taylor-Thornton, and Muller-Vingron, as well as Whelan and Goldman solely for testing. Test alignments with known distances between 0.01 and 2 substitutions per position (1-200 PAM) were simulated using ROSE. Scoredist proved as accurate as the optimal matrix methods, yet substantially more robust. When trained on one model but tested on another one, Scoredist was nearly always more accurate. The Jukes-Cantor and Kimura correction methods were also tested, but were substantially less accurate. CONCLUSION: The Scoredist distance estimator is fast to implement and run, and combines robustness with accuracy. Scoredist has been incorporated into the Belvu alignment viewer, which is available at ftp://ftp.cgb.ki.se/pub/prog/belvu/.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf Na546e0592fe046ebbdaefc31d5ccfa72
40 Na67be6245c4a4fd8bcae9096a4ceb4c4
41 sg:journal.1023786
42 schema:name Scoredist: A simple and robust protein sequence distance estimator
43 schema:pagination 108
44 schema:productId N5c160768099149cd9571554093da648c
45 N6a9e1cd6947741609bf93285e29d2373
46 N7740e6c2307b4617b86f85f4ad33f82b
47 N818c91d57d834645a423a53c3de8f3aa
48 Na5c20cc47ea64b5db97b3ded8d827c12
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037048502
50 https://doi.org/10.1186/1471-2105-6-108
51 schema:sdDatePublished 2019-04-10T19:07
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N7d7c36fc91df476992f78657bc7aae22
54 schema:url http://link.springer.com/10.1186%2F1471-2105-6-108
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N019961636f234a9d97159e97af2dd096 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Calibration
60 rdf:type schema:DefinedTerm
61 N0acc53a7e990458a83a4c730c0485545 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Molecular Sequence Data
63 rdf:type schema:DefinedTerm
64 N0d5151f3872644dbb5ada2ec9fabfa4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Software
66 rdf:type schema:DefinedTerm
67 N14342b0698144dbfaeec9a459cf645d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Pattern Recognition, Automated
69 rdf:type schema:DefinedTerm
70 N1b8d4bf33c72485e92de8bff04b164da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Phylogeny
72 rdf:type schema:DefinedTerm
73 N23312c808ff146c699696c10909d8ec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Sequence Homology, Amino Acid
75 rdf:type schema:DefinedTerm
76 N266abeff4166451cb7102d9ba38f1de3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Algorithms
78 rdf:type schema:DefinedTerm
79 N30914ab75abc4f8a96a78f533f9d7595 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Amino Acid Sequence
81 rdf:type schema:DefinedTerm
82 N5c160768099149cd9571554093da648c schema:name dimensions_id
83 schema:value pub.1037048502
84 rdf:type schema:PropertyValue
85 N62e286a7a19348448901b73c0a6d96c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Likelihood Functions
87 rdf:type schema:DefinedTerm
88 N6a9e1cd6947741609bf93285e29d2373 schema:name readcube_id
89 schema:value b07c577cd35460fec0e25c60f2ef63a44fcc77cb1fd3cc2a5b2822aa337811d1
90 rdf:type schema:PropertyValue
91 N765fd612ba7a4bd2921c07f2946543cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Sequence Analysis, Protein
93 rdf:type schema:DefinedTerm
94 N7740e6c2307b4617b86f85f4ad33f82b schema:name pubmed_id
95 schema:value 15857510
96 rdf:type schema:PropertyValue
97 N7d7c36fc91df476992f78657bc7aae22 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N818c91d57d834645a423a53c3de8f3aa schema:name doi
100 schema:value 10.1186/1471-2105-6-108
101 rdf:type schema:PropertyValue
102 N95b687297bbb4a09915613a1a85b5cc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Computer Simulation
104 rdf:type schema:DefinedTerm
105 N95d4faae59084f05aa5fdbc23b309e7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Biological Evolution
107 rdf:type schema:DefinedTerm
108 N965b2418e4644e4e879109850b4cf831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Models, Statistical
110 rdf:type schema:DefinedTerm
111 Na546e0592fe046ebbdaefc31d5ccfa72 schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 Na5c20cc47ea64b5db97b3ded8d827c12 schema:name nlm_unique_id
114 schema:value 100965194
115 rdf:type schema:PropertyValue
116 Na67be6245c4a4fd8bcae9096a4ceb4c4 schema:volumeNumber 6
117 rdf:type schema:PublicationVolume
118 Na87bf80bace941c291707425a2b8e93a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Evolution, Molecular
120 rdf:type schema:DefinedTerm
121 Nbeebfd804a03472da0c236eb218c46cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Computational Biology
123 rdf:type schema:DefinedTerm
124 Nd0aa91d9744e45da81d1ac3024a3be43 rdf:first sg:person.01004132464.62
125 rdf:rest rdf:nil
126 Nd82cd9cf1d2f4eb7ac7a35d17eb6dedd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Monte Carlo Method
128 rdf:type schema:DefinedTerm
129 Nfc33204d88c8446aa765153b668edaa1 rdf:first sg:person.01215262030.04
130 rdf:rest Nd0aa91d9744e45da81d1ac3024a3be43
131 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
132 schema:name Mathematical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
135 schema:name Statistics
136 rdf:type schema:DefinedTerm
137 sg:journal.1023786 schema:issn 1471-2105
138 schema:name BMC Bioinformatics
139 rdf:type schema:Periodical
140 sg:person.01004132464.62 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
141 schema:familyName Hollich
142 schema:givenName Volker
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004132464.62
144 rdf:type schema:Person
145 sg:person.01215262030.04 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
146 schema:familyName Sonnhammer
147 schema:givenName Erik LL
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215262030.04
149 rdf:type schema:Person
150 sg:pub.10.1186/1471-2105-3-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041450232
151 https://doi.org/10.1186/1471-2105-3-14
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.89.22.10915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234644
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1089/10665270050514918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204843
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1089/cmb.1996.3.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245127
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/14.2.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027219082
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/18.1.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032953758
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/18.9.1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032929124
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/8.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414153
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/oxfordjournals.molbev.a003851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002974679
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/oxfordjournals.molbev.a025808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035839794
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/oxfordjournals.molbev.a026231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030815736
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
178 schema:name Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...