Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Scott L Carter, Aron C Eklund, Brigham H Mecham, Isaac S Kohane, Zoltan Szallasi

ABSTRACT

BACKGROUND: Comparison of data produced on different microarray platforms often shows surprising discordance. It is not clear whether this discrepancy is caused by noisy data or by improper probe matching between platforms. We investigated whether the significant level of inconsistency between results produced by alternative gene expression microarray platforms could be reduced by stringent sequence matching of microarray probes. We mapped the short oligo probes of the Affymetrix platform onto cDNA clones of the Stanford microarray platform. Affymetrix probes were reassigned to redefined probe sets if they mapped to the same cDNA clone sequence, regardless of the original manufacturer-defined grouping. The NCI-60 gene expression profiles produced by Affymetrix HuFL platform were recalculated using these redefined probe sets and compared to previously published cDNA measurements of the same panel of RNA samples. RESULTS: The redefined probe sets displayed a substantially higher level of cross-platform consistency at the level of gene correlation, cell line correlation and unsupervised hierarchical clustering. The same strategy allowed an almost complete correspondence of breast cancer subtype classification between Affymetrix gene chip and cDNA microarray derived gene expression data, and gave an increased level of similarity between normal lung derived gene expression profiles using the two technologies. In total, two Affymetrix gene-chip platforms were remapped to three cDNA platforms in the various cross-platform analyses, resulting in improved concordance in each case. CONCLUSION: We have shown that probes which target overlapping transcript sequence regions on cDNA microarrays and Affymetrix gene-chips exhibit a greater level of concordance than the corresponding Unigene or sequence matched features. This method will be useful for the integrated analysis of gene expression data generated by multiple disparate measurement platforms. More... »

PAGES

107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-6-107

DOI

http://dx.doi.org/10.1186/1471-2105-6-107

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053069799

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15850491


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Probes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Complementary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Children's Hospital Informatics Program, Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carter", 
        "givenName": "Scott L", 
        "id": "sg:person.01300465737.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300465737.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Laboratory of Functional Genomics, Brigham and Women's Hospital, 65 Landsdowne Street, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eklund", 
        "givenName": "Aron C", 
        "id": "sg:person.0777444624.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777444624.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Children's Hospital Informatics Program, Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mecham", 
        "givenName": "Brigham H", 
        "id": "sg:person.014476145727.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476145727.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Children's Hospital Informatics Program, Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohane", 
        "givenName": "Isaac S", 
        "id": "sg:person.015317453537.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317453537.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Children's Hospital Informatics Program, Harvard Medical School, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szallasi", 
        "givenName": "Zoltan", 
        "id": "sg:person.0767122747.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767122747.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0958-1669(98)80138-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000640479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0932692100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007535956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.191502998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012580984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.201162998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014198831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015630813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017120232", 
          "https://doi.org/10.1038/73439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017120232", 
          "https://doi.org/10.1038/73439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018638362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-5-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019050514", 
          "https://doi.org/10.1186/1471-2164-5-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019401433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019475208", 
          "https://doi.org/10.1186/1471-2105-4-27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.241500798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022053203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022253796", 
          "https://doi.org/10.1186/1471-2105-5-111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)13308-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028468615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.10.e48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030386929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0893-332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030849131", 
          "https://doi.org/10.1038/ng0893-332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033846543", 
          "https://doi.org/10.1038/35021093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.191367098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034333528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.191368598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038060504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-12-r82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039146487", 
          "https://doi.org/10.1186/gb-2003-4-12-r82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gnh071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049636235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ddr.430340203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049754783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa032520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci15795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063415442"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Comparison of data produced on different microarray platforms often shows surprising discordance. It is not clear whether this discrepancy is caused by noisy data or by improper probe matching between platforms. We investigated whether the significant level of inconsistency between results produced by alternative gene expression microarray platforms could be reduced by stringent sequence matching of microarray probes. We mapped the short oligo probes of the Affymetrix platform onto cDNA clones of the Stanford microarray platform. Affymetrix probes were reassigned to redefined probe sets if they mapped to the same cDNA clone sequence, regardless of the original manufacturer-defined grouping. The NCI-60 gene expression profiles produced by Affymetrix HuFL platform were recalculated using these redefined probe sets and compared to previously published cDNA measurements of the same panel of RNA samples.\nRESULTS: The redefined probe sets displayed a substantially higher level of cross-platform consistency at the level of gene correlation, cell line correlation and unsupervised hierarchical clustering. The same strategy allowed an almost complete correspondence of breast cancer subtype classification between Affymetrix gene chip and cDNA microarray derived gene expression data, and gave an increased level of similarity between normal lung derived gene expression profiles using the two technologies. In total, two Affymetrix gene-chip platforms were remapped to three cDNA platforms in the various cross-platform analyses, resulting in improved concordance in each case.\nCONCLUSION: We have shown that probes which target overlapping transcript sequence regions on cDNA microarrays and Affymetrix gene-chips exhibit a greater level of concordance than the corresponding Unigene or sequence matched features. This method will be useful for the integrated analysis of gene expression data generated by multiple disparate measurement platforms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-6-107", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699416", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2435767", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements", 
    "pagination": "107", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcc8d17ae2c8730a38435bf561a114532e054c8e8888d771c4b184e0a06e3729"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15850491"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-6-107"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053069799"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-6-107", 
      "https://app.dimensions.ai/details/publication/pub.1053069799"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-6-107"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-107'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-107'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-107'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-6-107'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      73 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-6-107 schema:about N00408f94629d488799e90a7de55657ce
2 N11ca844d21ec42e89afe36b0f2b7fccb
3 N22551af3bdfc420e86b4fb8b194590c9
4 N23ecb7e1523349668007d35e25f48545
5 N2bd9f45e5ed247d78d9a87b3d398e74b
6 N3bc800267ff04880912c79ff5b824493
7 N49ce7b8938cb46de93bc9417fb166760
8 N4be4738abb114338a77a4832663361d6
9 N6e73a35fe3e6439f9a3c63e797638cc8
10 N6f14a575da0147e6814847a730ef2c07
11 N6f3fcda180f94a0d99501b228dbce6a4
12 N71ce46a15fd54607a4289844dc3bb0a5
13 N7b6736bb7b1444be9c19ebdbe6f765ff
14 N940f71b2423746a399be6222968efc96
15 Nb41382b1b5d94ed88e08fbc5528df464
16 Nd839b6f6ac034d8c8659498ea12a76c4
17 Ndba2a64faa0e4b769f731226998a33c9
18 Nddc95155224b4f10b77a3adb3e1ea3dc
19 Ne60692dda3cf43d2bf8dfe3b49081dca
20 Nf326e683c1cc4c91886460eb6e65e712
21 anzsrc-for:06
22 anzsrc-for:0604
23 schema:author N4ef1cd79c94341b1aff2d84ee84e0c7f
24 schema:citation sg:pub.10.1038/35021093
25 sg:pub.10.1038/73439
26 sg:pub.10.1038/ng0893-332
27 sg:pub.10.1186/1471-2105-4-27
28 sg:pub.10.1186/1471-2105-5-111
29 sg:pub.10.1186/1471-2164-5-2
30 sg:pub.10.1186/gb-2003-4-12-r82
31 sg:pub.10.1186/gb-2004-5-10-r80
32 https://doi.org/10.1002/ddr.430340203
33 https://doi.org/10.1016/s0140-6736(03)13308-9
34 https://doi.org/10.1016/s0958-1669(98)80138-9
35 https://doi.org/10.1056/nejmoa032520
36 https://doi.org/10.1073/pnas.0932692100
37 https://doi.org/10.1073/pnas.191367098
38 https://doi.org/10.1073/pnas.191368598
39 https://doi.org/10.1073/pnas.191502998
40 https://doi.org/10.1073/pnas.201162998
41 https://doi.org/10.1073/pnas.241500798
42 https://doi.org/10.1093/bioinformatics/18.3.405
43 https://doi.org/10.1093/nar/30.10.e48
44 https://doi.org/10.1093/nar/gkg763
45 https://doi.org/10.1093/nar/gng015
46 https://doi.org/10.1093/nar/gnh071
47 https://doi.org/10.1172/jci15795
48 schema:datePublished 2005-12
49 schema:datePublishedReg 2005-12-01
50 schema:description BACKGROUND: Comparison of data produced on different microarray platforms often shows surprising discordance. It is not clear whether this discrepancy is caused by noisy data or by improper probe matching between platforms. We investigated whether the significant level of inconsistency between results produced by alternative gene expression microarray platforms could be reduced by stringent sequence matching of microarray probes. We mapped the short oligo probes of the Affymetrix platform onto cDNA clones of the Stanford microarray platform. Affymetrix probes were reassigned to redefined probe sets if they mapped to the same cDNA clone sequence, regardless of the original manufacturer-defined grouping. The NCI-60 gene expression profiles produced by Affymetrix HuFL platform were recalculated using these redefined probe sets and compared to previously published cDNA measurements of the same panel of RNA samples. RESULTS: The redefined probe sets displayed a substantially higher level of cross-platform consistency at the level of gene correlation, cell line correlation and unsupervised hierarchical clustering. The same strategy allowed an almost complete correspondence of breast cancer subtype classification between Affymetrix gene chip and cDNA microarray derived gene expression data, and gave an increased level of similarity between normal lung derived gene expression profiles using the two technologies. In total, two Affymetrix gene-chip platforms were remapped to three cDNA platforms in the various cross-platform analyses, resulting in improved concordance in each case. CONCLUSION: We have shown that probes which target overlapping transcript sequence regions on cDNA microarrays and Affymetrix gene-chips exhibit a greater level of concordance than the corresponding Unigene or sequence matched features. This method will be useful for the integrated analysis of gene expression data generated by multiple disparate measurement platforms.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N2c46c12f78764e5089930a7c199e33e7
55 Nc5b89cbc48954c089b8b4cc5e0b088b8
56 sg:journal.1023786
57 schema:name Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements
58 schema:pagination 107
59 schema:productId N11dd0a20e1304144acc8e8c319e6c8db
60 N22244acc69364772962977f2630d93b2
61 N409cc65498714c2fb3bb6cff43db0573
62 N6d13a7dacdee49e8a4f83d0c46acb35b
63 Ne3cebcc126984025b64ff49c9e27ffc5
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069799
65 https://doi.org/10.1186/1471-2105-6-107
66 schema:sdDatePublished 2019-04-10T17:30
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N8fc5d8ce47544e3fa1c1a3193914399a
69 schema:url http://link.springer.com/10.1186%2F1471-2105-6-107
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N00408f94629d488799e90a7de55657ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N11ca844d21ec42e89afe36b0f2b7fccb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Gene Expression
78 rdf:type schema:DefinedTerm
79 N11dd0a20e1304144acc8e8c319e6c8db schema:name dimensions_id
80 schema:value pub.1053069799
81 rdf:type schema:PropertyValue
82 N22244acc69364772962977f2630d93b2 schema:name nlm_unique_id
83 schema:value 100965194
84 rdf:type schema:PropertyValue
85 N22551af3bdfc420e86b4fb8b194590c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Cell Line, Tumor
87 rdf:type schema:DefinedTerm
88 N23ecb7e1523349668007d35e25f48545 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name DNA Probes
90 rdf:type schema:DefinedTerm
91 N2bd9f45e5ed247d78d9a87b3d398e74b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Reproducibility of Results
93 rdf:type schema:DefinedTerm
94 N2c46c12f78764e5089930a7c199e33e7 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N2d47492d66b0485c82cbcf2442e0b582 rdf:first sg:person.0777444624.40
97 rdf:rest Ndda9fbb248274330bf16cc769e45637d
98 N3bc800267ff04880912c79ff5b824493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Breast Neoplasms
100 rdf:type schema:DefinedTerm
101 N409cc65498714c2fb3bb6cff43db0573 schema:name pubmed_id
102 schema:value 15850491
103 rdf:type schema:PropertyValue
104 N49ce7b8938cb46de93bc9417fb166760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Computational Biology
106 rdf:type schema:DefinedTerm
107 N4be4738abb114338a77a4832663361d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Data Interpretation, Statistical
109 rdf:type schema:DefinedTerm
110 N4ef1cd79c94341b1aff2d84ee84e0c7f rdf:first sg:person.01300465737.85
111 rdf:rest N2d47492d66b0485c82cbcf2442e0b582
112 N6d13a7dacdee49e8a4f83d0c46acb35b schema:name readcube_id
113 schema:value fcc8d17ae2c8730a38435bf561a114532e054c8e8888d771c4b184e0a06e3729
114 rdf:type schema:PropertyValue
115 N6e73a35fe3e6439f9a3c63e797638cc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Lung Neoplasms
117 rdf:type schema:DefinedTerm
118 N6f14a575da0147e6814847a730ef2c07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Oligonucleotide Array Sequence Analysis
120 rdf:type schema:DefinedTerm
121 N6f3fcda180f94a0d99501b228dbce6a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Phylogeny
123 rdf:type schema:DefinedTerm
124 N71ce46a15fd54607a4289844dc3bb0a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name RNA
126 rdf:type schema:DefinedTerm
127 N7b6736bb7b1444be9c19ebdbe6f765ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Gene Expression Regulation
129 rdf:type schema:DefinedTerm
130 N83b3033b076e4045bceeaa16c9a29b13 rdf:first sg:person.0767122747.55
131 rdf:rest rdf:nil
132 N8fc5d8ce47544e3fa1c1a3193914399a schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N940f71b2423746a399be6222968efc96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Gene Expression Regulation, Neoplastic
136 rdf:type schema:DefinedTerm
137 Nb41382b1b5d94ed88e08fbc5528df464 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name DNA, Complementary
139 rdf:type schema:DefinedTerm
140 Nc5b89cbc48954c089b8b4cc5e0b088b8 schema:volumeNumber 6
141 rdf:type schema:PublicationVolume
142 Nc97a1884ccbd4b90964398b7d7b5ec7e rdf:first sg:person.015317453537.75
143 rdf:rest N83b3033b076e4045bceeaa16c9a29b13
144 Nd839b6f6ac034d8c8659498ea12a76c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name RNA, Neoplasm
146 rdf:type schema:DefinedTerm
147 Ndba2a64faa0e4b769f731226998a33c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Gene Expression Profiling
149 rdf:type schema:DefinedTerm
150 Ndda9fbb248274330bf16cc769e45637d rdf:first sg:person.014476145727.76
151 rdf:rest Nc97a1884ccbd4b90964398b7d7b5ec7e
152 Nddc95155224b4f10b77a3adb3e1ea3dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Sensitivity and Specificity
154 rdf:type schema:DefinedTerm
155 Ne3cebcc126984025b64ff49c9e27ffc5 schema:name doi
156 schema:value 10.1186/1471-2105-6-107
157 rdf:type schema:PropertyValue
158 Ne60692dda3cf43d2bf8dfe3b49081dca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Neoplasms
160 rdf:type schema:DefinedTerm
161 Nf326e683c1cc4c91886460eb6e65e712 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Cluster Analysis
163 rdf:type schema:DefinedTerm
164 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
165 schema:name Biological Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
168 schema:name Genetics
169 rdf:type schema:DefinedTerm
170 sg:grant.2435767 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-6-107
171 rdf:type schema:MonetaryGrant
172 sg:grant.2699416 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-6-107
173 rdf:type schema:MonetaryGrant
174 sg:journal.1023786 schema:issn 1471-2105
175 schema:name BMC Bioinformatics
176 rdf:type schema:Periodical
177 sg:person.01300465737.85 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
178 schema:familyName Carter
179 schema:givenName Scott L
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300465737.85
181 rdf:type schema:Person
182 sg:person.014476145727.76 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
183 schema:familyName Mecham
184 schema:givenName Brigham H
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476145727.76
186 rdf:type schema:Person
187 sg:person.015317453537.75 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
188 schema:familyName Kohane
189 schema:givenName Isaac S
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317453537.75
191 rdf:type schema:Person
192 sg:person.0767122747.55 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
193 schema:familyName Szallasi
194 schema:givenName Zoltan
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767122747.55
196 rdf:type schema:Person
197 sg:person.0777444624.40 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
198 schema:familyName Eklund
199 schema:givenName Aron C
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777444624.40
201 rdf:type schema:Person
202 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
203 https://doi.org/10.1038/35021093
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/73439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017120232
206 https://doi.org/10.1038/73439
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/ng0893-332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030849131
209 https://doi.org/10.1038/ng0893-332
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1471-2105-4-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019475208
212 https://doi.org/10.1186/1471-2105-4-27
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1471-2105-5-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022253796
215 https://doi.org/10.1186/1471-2105-5-111
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/1471-2164-5-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019050514
218 https://doi.org/10.1186/1471-2164-5-2
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/gb-2003-4-12-r82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039146487
221 https://doi.org/10.1186/gb-2003-4-12-r82
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
224 https://doi.org/10.1186/gb-2004-5-10-r80
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/ddr.430340203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049754783
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0140-6736(03)13308-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028468615
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0958-1669(98)80138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000640479
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1056/nejmoa032520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052250686
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.0932692100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007535956
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.191367098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034333528
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1073/pnas.191368598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038060504
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1073/pnas.191502998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012580984
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1073/pnas.201162998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014198831
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1073/pnas.241500798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022053203
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/bioinformatics/18.3.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015630813
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/30.10.e48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030386929
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/gkg763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019401433
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/nar/gnh071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636235
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1172/jci15795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063415442
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
259 schema:name Children's Hospital Informatics Program, Harvard Medical School, 02115, Boston, MA, USA
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
262 schema:name Laboratory of Functional Genomics, Brigham and Women's Hospital, 65 Landsdowne Street, 02139, Cambridge, MA, USA
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...