Integrated web service for improving alignment quality based on segments comparison View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12

AUTHORS

Dariusz Plewczynski, Leszek Rychlewski, Yuzhen Ye, Lukasz Jaroszewski, Adam Godzik

ABSTRACT

BACKGROUND: Defining blocks forming the global protein structure on the basis of local structural regularity is a very fruitful idea, extensively used in description, and prediction of structure from only sequence information. Over many years the secondary structure elements were used as available building blocks with great success. Specially prepared sets of possible structural motifs can be used to describe similarity between very distant, non-homologous proteins. The reason for utilizing the structural information in the description of proteins is straightforward. Structural comparison is able to detect approximately twice as many distant relationships as sequence comparison at the same error rate. RESULTS: Here we provide a new fragment library for Local Structure Segment (LSS) prediction called FRAGlib which is integrated with a previously described segment alignment algorithm SEA. A joined FRAGlib/SEA server provides easy access to both algorithms, allowing a one stop alignment service using a novel approach to protein sequence alignment based on a network matching approach. The FRAGlib used as secondary structure prediction achieves only 73% accuracy in Q3 measure, but when combined with the SEA alignment, it achieves a significant improvement in pairwise sequence alignment quality, as compared to previous SEA implementation and other public alignment algorithms. The FRAGlib algorithm takes approximately 2 min. to search over FRAGlib database for a typical query protein with 500 residues. The SEA service align two typical proteins within circa approximately 5 min. All supplementary materials (detailed results of all the benchmarks, the list of test proteins and the whole fragments library) are available for download on-line at http://ffas.ljcrf.edu/darman/results/. CONCLUSIONS: The joined FRAGlib/SEA server will be a valuable tool both for molecular biologists working on protein sequence analysis and for bioinformaticians developing computational methods of structure prediction and alignment of proteins. More... »

PAGES

98

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-5-98

DOI

http://dx.doi.org/10.1186/1471-2105-5-98

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047792647

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15271224


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Online Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Fragments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Bioinformatics Laboratory, BioInfoBank Institute, Poznan, Poland", 
            "Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plewczynski", 
        "givenName": "Dariusz", 
        "id": "sg:person.0737056125.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737056125.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BioInfoBank (Poland)", 
          "id": "https://www.grid.ac/institutes/grid.424137.7", 
          "name": [
            "Bioinformatics Laboratory, BioInfoBank Institute, Poznan, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychlewski", 
        "givenName": "Leszek", 
        "id": "sg:person.01247720374.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247720374.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sanford Burnham Prebys Medical Discovery Institute", 
          "id": "https://www.grid.ac/institutes/grid.479509.6", 
          "name": [
            "The Burnham Institute, La Jolla, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Yuzhen", 
        "id": "sg:person.01015367307.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015367307.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Bioinformatics Core JCSG, University of California San Diego, La Jolla, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaroszewski", 
        "givenName": "Lukasz", 
        "id": "sg:person.01071146351.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071146351.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "The Burnham Institute, La Jolla, USA", 
            "Bioinformatics Core JCSG, University of California San Diego, La Jolla, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Godzik", 
        "givenName": "Adam", 
        "id": "sg:person.01064406065.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064406065.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/protein/10.10.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000057957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007916266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013505475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013505475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1998.1943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013644073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.11.5913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017476898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/11.9.739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023568040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024333852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026163765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80134-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036197701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/11525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044132807", 
          "https://doi.org/10.1038/11525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045497817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049673856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.8.1487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050867156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.2.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051339063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.2.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051339063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(1999)37:3+<171::aid-prot21>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052271062"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "BACKGROUND: Defining blocks forming the global protein structure on the basis of local structural regularity is a very fruitful idea, extensively used in description, and prediction of structure from only sequence information. Over many years the secondary structure elements were used as available building blocks with great success. Specially prepared sets of possible structural motifs can be used to describe similarity between very distant, non-homologous proteins. The reason for utilizing the structural information in the description of proteins is straightforward. Structural comparison is able to detect approximately twice as many distant relationships as sequence comparison at the same error rate.\nRESULTS: Here we provide a new fragment library for Local Structure Segment (LSS) prediction called FRAGlib which is integrated with a previously described segment alignment algorithm SEA. A joined FRAGlib/SEA server provides easy access to both algorithms, allowing a one stop alignment service using a novel approach to protein sequence alignment based on a network matching approach. The FRAGlib used as secondary structure prediction achieves only 73% accuracy in Q3 measure, but when combined with the SEA alignment, it achieves a significant improvement in pairwise sequence alignment quality, as compared to previous SEA implementation and other public alignment algorithms. The FRAGlib algorithm takes approximately 2 min. to search over FRAGlib database for a typical query protein with 500 residues. The SEA service align two typical proteins within circa approximately 5 min. All supplementary materials (detailed results of all the benchmarks, the list of test proteins and the whole fragments library) are available for download on-line at http://ffas.ljcrf.edu/darman/results/.\nCONCLUSIONS: The joined FRAGlib/SEA server will be a valuable tool both for molecular biologists working on protein sequence analysis and for bioinformaticians developing computational methods of structure prediction and alignment of proteins.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-5-98", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2436395", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Integrated web service for improving alignment quality based on segments comparison", 
    "pagination": "98", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3ac111ecb93b535518e598c9d1d35571f0f7be90b7458f750e07068796f7d78"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15271224"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-5-98"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047792647"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-5-98", 
      "https://app.dimensions.ai/details/publication/pub.1047792647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-5-98"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-98'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-98'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-98'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-98'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      55 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-5-98 schema:about N11bcad9f61084ab4894d1d4010ec02c6
2 N17161313d3824c8480768a063149f3f9
3 N35679cc8c84246878d76182a232068bc
4 N63f6b20f3cc64fdcb7d6e4105aef7df3
5 N860cde6041ad4c22a12fe1e1cb1db32a
6 Nbb917954877249f3b2528fb612a9d7bc
7 Nc0198455f4904e2eb3fe6f26274a52c2
8 Ndabcbc9ea9b94e5393438bd95c34e0b1
9 anzsrc-for:08
10 anzsrc-for:0806
11 schema:author N2bfef97d8ff14bde988b64479921f824
12 schema:citation sg:pub.10.1038/11525
13 https://doi.org/10.1002/(sici)1097-0134(1999)37:3+<171::aid-prot21>3.0.co;2-z
14 https://doi.org/10.1002/pro.5560050516
15 https://doi.org/10.1002/prot.10043
16 https://doi.org/10.1006/jmbi.1993.1464
17 https://doi.org/10.1006/jmbi.1998.1943
18 https://doi.org/10.1016/s0022-2836(05)80134-2
19 https://doi.org/10.1016/s0022-2836(05)80360-2
20 https://doi.org/10.1073/pnas.95.11.5913
21 https://doi.org/10.1093/bioinformatics/18.2.306
22 https://doi.org/10.1093/bioinformatics/btg073
23 https://doi.org/10.1093/nar/25.17.3389
24 https://doi.org/10.1093/nar/28.1.254
25 https://doi.org/10.1093/nar/30.1.260
26 https://doi.org/10.1093/protein/10.10.1143
27 https://doi.org/10.1093/protein/11.9.739
28 https://doi.org/10.1110/ps.9.2.232
29 https://doi.org/10.1110/ps.9.8.1487
30 schema:datePublished 2004-12
31 schema:datePublishedReg 2004-12-01
32 schema:description BACKGROUND: Defining blocks forming the global protein structure on the basis of local structural regularity is a very fruitful idea, extensively used in description, and prediction of structure from only sequence information. Over many years the secondary structure elements were used as available building blocks with great success. Specially prepared sets of possible structural motifs can be used to describe similarity between very distant, non-homologous proteins. The reason for utilizing the structural information in the description of proteins is straightforward. Structural comparison is able to detect approximately twice as many distant relationships as sequence comparison at the same error rate. RESULTS: Here we provide a new fragment library for Local Structure Segment (LSS) prediction called FRAGlib which is integrated with a previously described segment alignment algorithm SEA. A joined FRAGlib/SEA server provides easy access to both algorithms, allowing a one stop alignment service using a novel approach to protein sequence alignment based on a network matching approach. The FRAGlib used as secondary structure prediction achieves only 73% accuracy in Q3 measure, but when combined with the SEA alignment, it achieves a significant improvement in pairwise sequence alignment quality, as compared to previous SEA implementation and other public alignment algorithms. The FRAGlib algorithm takes approximately 2 min. to search over FRAGlib database for a typical query protein with 500 residues. The SEA service align two typical proteins within circa approximately 5 min. All supplementary materials (detailed results of all the benchmarks, the list of test proteins and the whole fragments library) are available for download on-line at http://ffas.ljcrf.edu/darman/results/. CONCLUSIONS: The joined FRAGlib/SEA server will be a valuable tool both for molecular biologists working on protein sequence analysis and for bioinformaticians developing computational methods of structure prediction and alignment of proteins.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N6aed41abf7d7482683f6c128f7c32d4b
37 Ne5ba7c9163c2498dbddd95eb7f75acac
38 sg:journal.1023786
39 schema:name Integrated web service for improving alignment quality based on segments comparison
40 schema:pagination 98
41 schema:productId N268b637ffce445ffbb6d3390194a0181
42 N55bd6892cf4045358551ecc7012d848e
43 N6ad8fc1d6810474a8e56d1aa924c3b18
44 N9675a6548991444498f7f49b7d1fdcb1
45 Ncb485589e6f3455ea71b395a8758eb43
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047792647
47 https://doi.org/10.1186/1471-2105-5-98
48 schema:sdDatePublished 2019-04-11T01:59
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nb4a450e73d92471c8cae5dcb084487be
51 schema:url http://link.springer.com/10.1186%2F1471-2105-5-98
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N11bcad9f61084ab4894d1d4010ec02c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Internet
57 rdf:type schema:DefinedTerm
58 N17161313d3824c8480768a063149f3f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Sequence Alignment
60 rdf:type schema:DefinedTerm
61 N268b637ffce445ffbb6d3390194a0181 schema:name dimensions_id
62 schema:value pub.1047792647
63 rdf:type schema:PropertyValue
64 N28b86c5fe64c4f749f3d3434f7d5a936 rdf:first sg:person.01247720374.91
65 rdf:rest Nd8a4eca2288a40e8b3cbc27fad0b024b
66 N2bfef97d8ff14bde988b64479921f824 rdf:first sg:person.0737056125.01
67 rdf:rest N28b86c5fe64c4f749f3d3434f7d5a936
68 N35679cc8c84246878d76182a232068bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Software
70 rdf:type schema:DefinedTerm
71 N55bd6892cf4045358551ecc7012d848e schema:name nlm_unique_id
72 schema:value 100965194
73 rdf:type schema:PropertyValue
74 N63f6b20f3cc64fdcb7d6e4105aef7df3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Databases, Protein
76 rdf:type schema:DefinedTerm
77 N6ad8fc1d6810474a8e56d1aa924c3b18 schema:name readcube_id
78 schema:value e3ac111ecb93b535518e598c9d1d35571f0f7be90b7458f750e07068796f7d78
79 rdf:type schema:PropertyValue
80 N6aed41abf7d7482683f6c128f7c32d4b schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N860cde6041ad4c22a12fe1e1cb1db32a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Online Systems
84 rdf:type schema:DefinedTerm
85 N9675a6548991444498f7f49b7d1fdcb1 schema:name pubmed_id
86 schema:value 15271224
87 rdf:type schema:PropertyValue
88 Nb4a450e73d92471c8cae5dcb084487be schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nbb917954877249f3b2528fb612a9d7bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Computational Biology
92 rdf:type schema:DefinedTerm
93 Nc0198455f4904e2eb3fe6f26274a52c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Predictive Value of Tests
95 rdf:type schema:DefinedTerm
96 Ncb485589e6f3455ea71b395a8758eb43 schema:name doi
97 schema:value 10.1186/1471-2105-5-98
98 rdf:type schema:PropertyValue
99 Ncb50f751fb6641df95704df8502d9c01 rdf:first sg:person.01071146351.70
100 rdf:rest Nf8f38176e1764362be29ecd746328d83
101 Nd8a4eca2288a40e8b3cbc27fad0b024b rdf:first sg:person.01015367307.45
102 rdf:rest Ncb50f751fb6641df95704df8502d9c01
103 Ndabcbc9ea9b94e5393438bd95c34e0b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Peptide Fragments
105 rdf:type schema:DefinedTerm
106 Ne5ba7c9163c2498dbddd95eb7f75acac schema:volumeNumber 5
107 rdf:type schema:PublicationVolume
108 Nf8f38176e1764362be29ecd746328d83 rdf:first sg:person.01064406065.43
109 rdf:rest rdf:nil
110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information and Computing Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information Systems
115 rdf:type schema:DefinedTerm
116 sg:grant.2436395 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-5-98
117 rdf:type schema:MonetaryGrant
118 sg:journal.1023786 schema:issn 1471-2105
119 schema:name BMC Bioinformatics
120 rdf:type schema:Periodical
121 sg:person.01015367307.45 schema:affiliation https://www.grid.ac/institutes/grid.479509.6
122 schema:familyName Ye
123 schema:givenName Yuzhen
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015367307.45
125 rdf:type schema:Person
126 sg:person.01064406065.43 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
127 schema:familyName Godzik
128 schema:givenName Adam
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064406065.43
130 rdf:type schema:Person
131 sg:person.01071146351.70 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
132 schema:familyName Jaroszewski
133 schema:givenName Lukasz
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071146351.70
135 rdf:type schema:Person
136 sg:person.01247720374.91 schema:affiliation https://www.grid.ac/institutes/grid.424137.7
137 schema:familyName Rychlewski
138 schema:givenName Leszek
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247720374.91
140 rdf:type schema:Person
141 sg:person.0737056125.01 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
142 schema:familyName Plewczynski
143 schema:givenName Dariusz
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737056125.01
145 rdf:type schema:Person
146 sg:pub.10.1038/11525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044132807
147 https://doi.org/10.1038/11525
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/(sici)1097-0134(1999)37:3+<171::aid-prot21>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052271062
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/pro.5560050516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013505475
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/prot.10043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007916266
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1006/jmbi.1993.1464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026163765
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1006/jmbi.1998.1943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013644073
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0022-2836(05)80134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477247
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.95.11.5913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017476898
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/18.2.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024333852
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/btg073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045497817
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/nar/28.1.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049673856
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/30.1.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036197701
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/protein/10.10.1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000057957
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/protein/11.9.739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023568040
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1110/ps.9.2.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051339063
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1110/ps.9.8.1487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050867156
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
184 schema:name Bioinformatics Laboratory, BioInfoBank Institute, Poznan, Poland
185 Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Poland
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
188 schema:name Bioinformatics Core JCSG, University of California San Diego, La Jolla, USA
189 The Burnham Institute, La Jolla, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.424137.7 schema:alternateName BioInfoBank (Poland)
192 schema:name Bioinformatics Laboratory, BioInfoBank Institute, Poznan, Poland
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.479509.6 schema:alternateName Sanford Burnham Prebys Medical Discovery Institute
195 schema:name The Burnham Institute, La Jolla, USA
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...