HMM Logos for visualization of protein families View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12

AUTHORS

Benjamin Schuster-Böckler, Jörg Schultz, Sven Rahmann

ABSTRACT

BACKGROUND: Profile Hidden Markov Models (pHMMs) are a widely used tool for protein family research. Up to now, however, there exists no method to visualize all of their central aspects graphically in an intuitively understandable way. RESULTS: We present a visualization method that incorporates both emission and transition probabilities of the pHMM, thus extending sequence logos introduced by Schneider and Stephens. For each emitting state of the pHMM, we display a stack of letters. The stack height is determined by the deviation of the position's letter emission frequencies from the background frequencies. The stack width visualizes both the probability of reaching the state (the hitting probability) and the expected number of letters the state emits during a pass through the model (the state's expected contribution).A web interface offering online creation of HMM Logos and the corresponding source code can be found at the Logos web server of the Max Planck Institute for Molecular Genetics http://logos.molgen.mpg.de. CONCLUSIONS: We demonstrate that HMM Logos can be a useful tool for the biologist: We use them to highlight differences between two homologous subfamilies of GTPases, Rab and Ras, and we show that they are able to indicate structural elements of Ras. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-5-7

DOI

http://dx.doi.org/10.1186/1471-2105-5-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048721015

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14736340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Graphics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monomeric GTP-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Freie Universit\u00e4t Berlin", 
          "id": "https://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Department of Mathematics and Computer Science Freie Universit\u00e4t Berlin, Germany", 
            "Prundsbergstr. 23a, D-82064, Strasslach, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuster-B\u00f6ckler", 
        "givenName": "Benjamin", 
        "id": "sg:person.01243311563.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243311563.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of W\u00fcrzburg", 
          "id": "https://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Department of Bioinformatics, Biozentrum, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schultz", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.01150425151.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150425151.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Genetics", 
          "id": "https://www.grid.ac/institutes/grid.419538.2", 
          "name": [
            "Department of Mathematics and Computer Science Freie Universit\u00e4t Berlin, Germany", 
            "Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestr. 73, D-14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahmann", 
        "givenName": "Sven", 
        "id": "sg:person.01331436773.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331436773.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/30.1.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011151029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1994.1104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016537913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/12.4.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020819907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021569253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034911822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/18.20.6097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041886714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043194598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3067010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057907404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "BACKGROUND: Profile Hidden Markov Models (pHMMs) are a widely used tool for protein family research. Up to now, however, there exists no method to visualize all of their central aspects graphically in an intuitively understandable way.\nRESULTS: We present a visualization method that incorporates both emission and transition probabilities of the pHMM, thus extending sequence logos introduced by Schneider and Stephens. For each emitting state of the pHMM, we display a stack of letters. The stack height is determined by the deviation of the position's letter emission frequencies from the background frequencies. The stack width visualizes both the probability of reaching the state (the hitting probability) and the expected number of letters the state emits during a pass through the model (the state's expected contribution).A web interface offering online creation of HMM Logos and the corresponding source code can be found at the Logos web server of the Max Planck Institute for Molecular Genetics http://logos.molgen.mpg.de.\nCONCLUSIONS: We demonstrate that HMM Logos can be a useful tool for the biologist: We use them to highlight differences between two homologous subfamilies of GTPases, Rab and Ras, and we show that they are able to indicate structural elements of Ras.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-5-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "HMM Logos for visualization of protein families", 
    "pagination": "7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e8191c21d76da7a8ec02c782a43d5af02853163e1a8fc67dc491403e2fa1027c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14736340"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-5-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048721015"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-5-7", 
      "https://app.dimensions.ai/details/publication/pub.1048721015"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-5-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-7'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      47 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-5-7 schema:about N3850396612c048f5ba5f204b6d74ceb6
2 N3957c5fda233494b99ba07822e88ee5d
3 N4c382e5b421148e191ede6a1470aece4
4 N5133223bb78c41d68057739885a65361
5 N84414c26637c461e9fa0030a75275e6a
6 N8bce6a19991d44a48864ffcaf38d6582
7 Nf08a4da7a1f54e948bdd84cb83560d38
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author Nc5739ffc155d4ceea429911068c0af8a
11 schema:citation https://doi.org/10.1002/0471200611
12 https://doi.org/10.1006/jmbi.1994.1104
13 https://doi.org/10.1006/jmbi.2000.4010
14 https://doi.org/10.1063/1.3067010
15 https://doi.org/10.1093/bioinformatics/12.4.327
16 https://doi.org/10.1093/bioinformatics/14.9.755
17 https://doi.org/10.1093/nar/18.20.6097
18 https://doi.org/10.1093/nar/30.1.242
19 https://doi.org/10.1093/nar/30.1.276
20 https://doi.org/10.1109/5.18626
21 https://doi.org/10.2202/1544-6115.1032
22 schema:datePublished 2004-12
23 schema:datePublishedReg 2004-12-01
24 schema:description BACKGROUND: Profile Hidden Markov Models (pHMMs) are a widely used tool for protein family research. Up to now, however, there exists no method to visualize all of their central aspects graphically in an intuitively understandable way. RESULTS: We present a visualization method that incorporates both emission and transition probabilities of the pHMM, thus extending sequence logos introduced by Schneider and Stephens. For each emitting state of the pHMM, we display a stack of letters. The stack height is determined by the deviation of the position's letter emission frequencies from the background frequencies. The stack width visualizes both the probability of reaching the state (the hitting probability) and the expected number of letters the state emits during a pass through the model (the state's expected contribution).A web interface offering online creation of HMM Logos and the corresponding source code can be found at the Logos web server of the Max Planck Institute for Molecular Genetics http://logos.molgen.mpg.de. CONCLUSIONS: We demonstrate that HMM Logos can be a useful tool for the biologist: We use them to highlight differences between two homologous subfamilies of GTPases, Rab and Ras, and we show that they are able to indicate structural elements of Ras.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N3a7699498dc5414b901f7728d29d3b7c
29 Ndb8565c37272411abbfb18cb05336bb4
30 sg:journal.1023786
31 schema:name HMM Logos for visualization of protein families
32 schema:pagination 7
33 schema:productId N0245753210794b578838d8ea48edf2a4
34 N27af202f8b5249a5af46d19a3d3bcb33
35 N4a7836b91939480a85b426557468a4e6
36 N9fe9fbe3bfd14e17ad5b3f53d9dc1a27
37 Nd3b06219dceb48b9a0203acce74e9f48
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048721015
39 https://doi.org/10.1186/1471-2105-5-7
40 schema:sdDatePublished 2019-04-11T10:35
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N50f5d580fa1c4dbdb373fc08a2c006f9
43 schema:url https://link.springer.com/10.1186%2F1471-2105-5-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0245753210794b578838d8ea48edf2a4 schema:name pubmed_id
48 schema:value 14736340
49 rdf:type schema:PropertyValue
50 N27af202f8b5249a5af46d19a3d3bcb33 schema:name doi
51 schema:value 10.1186/1471-2105-5-7
52 rdf:type schema:PropertyValue
53 N3850396612c048f5ba5f204b6d74ceb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Monomeric GTP-Binding Proteins
55 rdf:type schema:DefinedTerm
56 N3957c5fda233494b99ba07822e88ee5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Markov Chains
58 rdf:type schema:DefinedTerm
59 N3a7699498dc5414b901f7728d29d3b7c schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N4a7836b91939480a85b426557468a4e6 schema:name nlm_unique_id
62 schema:value 100965194
63 rdf:type schema:PropertyValue
64 N4c382e5b421148e191ede6a1470aece4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Sequence Alignment
66 rdf:type schema:DefinedTerm
67 N50f5d580fa1c4dbdb373fc08a2c006f9 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N5133223bb78c41d68057739885a65361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Amino Acid Motifs
71 rdf:type schema:DefinedTerm
72 N84414c26637c461e9fa0030a75275e6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Computer Graphics
74 rdf:type schema:DefinedTerm
75 N885c1e30a30a4ec486bff9fec4f23afd rdf:first sg:person.01331436773.49
76 rdf:rest rdf:nil
77 N8bce6a19991d44a48864ffcaf38d6582 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Databases, Protein
79 rdf:type schema:DefinedTerm
80 N9fe9fbe3bfd14e17ad5b3f53d9dc1a27 schema:name dimensions_id
81 schema:value pub.1048721015
82 rdf:type schema:PropertyValue
83 Nc5739ffc155d4ceea429911068c0af8a rdf:first sg:person.01243311563.33
84 rdf:rest Nce2586a887694f7badc9b01e0967e150
85 Nce2586a887694f7badc9b01e0967e150 rdf:first sg:person.01150425151.55
86 rdf:rest N885c1e30a30a4ec486bff9fec4f23afd
87 Nd3b06219dceb48b9a0203acce74e9f48 schema:name readcube_id
88 schema:value e8191c21d76da7a8ec02c782a43d5af02853163e1a8fc67dc491403e2fa1027c
89 rdf:type schema:PropertyValue
90 Ndb8565c37272411abbfb18cb05336bb4 schema:volumeNumber 5
91 rdf:type schema:PublicationVolume
92 Nf08a4da7a1f54e948bdd84cb83560d38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Computational Biology
94 rdf:type schema:DefinedTerm
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biochemistry and Cell Biology
100 rdf:type schema:DefinedTerm
101 sg:journal.1023786 schema:issn 1471-2105
102 schema:name BMC Bioinformatics
103 rdf:type schema:Periodical
104 sg:person.01150425151.55 schema:affiliation https://www.grid.ac/institutes/grid.8379.5
105 schema:familyName Schultz
106 schema:givenName Jörg
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150425151.55
108 rdf:type schema:Person
109 sg:person.01243311563.33 schema:affiliation https://www.grid.ac/institutes/grid.14095.39
110 schema:familyName Schuster-Böckler
111 schema:givenName Benjamin
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243311563.33
113 rdf:type schema:Person
114 sg:person.01331436773.49 schema:affiliation https://www.grid.ac/institutes/grid.419538.2
115 schema:familyName Rahmann
116 schema:givenName Sven
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331436773.49
118 rdf:type schema:Person
119 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1006/jmbi.1994.1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016537913
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/jmbi.2000.4010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034911822
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.3067010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057907404
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1093/bioinformatics/12.4.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020819907
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/nar/18.20.6097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041886714
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/nar/30.1.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043194598
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/nar/30.1.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011151029
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2202/1544-6115.1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021569253
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.14095.39 schema:alternateName Freie Universität Berlin
142 schema:name Department of Mathematics and Computer Science Freie Universität Berlin, Germany
143 Prundsbergstr. 23a, D-82064, Strasslach, Germany
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.419538.2 schema:alternateName Max Planck Institute for Molecular Genetics
146 schema:name Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestr. 73, D-14195, Berlin, Germany
147 Department of Mathematics and Computer Science Freie Universität Berlin, Germany
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.8379.5 schema:alternateName University of Würzburg
150 schema:name Department of Bioinformatics, Biozentrum, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...