Gene finding in novel genomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12

AUTHORS

Ian Korf

ABSTRACT

BACKGROUND: Computational gene prediction continues to be an important problem, especially for genomes with little experimental data. RESULTS: I introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate. CONCLUSION: Since gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder. More... »

PAGES

59

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-5-59

DOI

http://dx.doi.org/10.1186/1471-2105-5-59

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042217342

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15144565


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Helminth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Insect", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korf", 
        "givenName": "Ian", 
        "id": "sg:person.01063041236.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063041236.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003350010039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008076660", 
          "https://doi.org/10.1007/s003350010039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008613513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021290478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(99)00079-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023224983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.4.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024470556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-437x(00)00250-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026245412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.201407298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026876373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027870504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.361602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028020859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.0951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028174721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.10.901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-6851(01)00363-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037596155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(98)70286-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039330966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.4.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039597681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.5.1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042341978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.11.1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047590604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082984657", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083156239", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083156258", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "BACKGROUND: Computational gene prediction continues to be an important problem, especially for genomes with little experimental data.\nRESULTS: I introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate.\nCONCLUSION: Since gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-5-59", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Gene finding in novel genomes", 
    "pagination": "59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c91a589d82eeaf15a0252ac63c0b6f4e9d60501ad402f529b59571ed54a253f3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15144565"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-5-59"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042217342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-5-59", 
      "https://app.dimensions.ai/details/publication/pub.1042217342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-5-59"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-59'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-59'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-59'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-59'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      64 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-5-59 schema:about N00c0b07985e341f6b7db7b464673a41f
2 N25276181e3864ac3bd039180ad04bcc7
3 N2ad64d2fca2c4cb4989abffc729043ac
4 N429ad8042b5e490d95818afbb61cc44f
5 N49d717d48ae94b8886144a2cafd57664
6 Na30ece3a20c7478c83515ef62d1b2b50
7 Na6c00ae85b50405fa914d9c7593d5f9e
8 Nac7edd981e6f4526b46d05bac2121eed
9 Nacf00f63091a46309417eb0802d06ceb
10 Nbc08c0efdc4842b2bbf4a9dbd3ab676e
11 Nd4936525afb7468ea646343f7c7e2734
12 Ne1cc4343b3e8465fa57b8263a66334e2
13 Ne8afa9ac05314170be30079968496757
14 Nead1a66ca5054802b339380b9dbb918b
15 Nf7677649208d4e4b81a6a65d58365e06
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author N21815fd4feff491e98d472b2e5def420
19 schema:citation sg:pub.10.1007/s003350010039
20 https://app.dimensions.ai/details/publication/pub.1082984657
21 https://app.dimensions.ai/details/publication/pub.1083156239
22 https://app.dimensions.ai/details/publication/pub.1083156258
23 https://doi.org/10.1006/jmbi.1997.0951
24 https://doi.org/10.1016/s0022-2836(05)80360-2
25 https://doi.org/10.1016/s0166-6851(01)00363-2
26 https://doi.org/10.1016/s0378-1119(99)00079-7
27 https://doi.org/10.1016/s0959-437x(00)00250-1
28 https://doi.org/10.1016/s0960-9822(98)70286-6
29 https://doi.org/10.1073/pnas.201407298
30 https://doi.org/10.1093/bioinformatics/16.11.1040
31 https://doi.org/10.1093/bioinformatics/17.10.901
32 https://doi.org/10.1093/bioinformatics/btg1080
33 https://doi.org/10.1093/nar/30.1.98
34 https://doi.org/10.1093/nar/30.5.1233
35 https://doi.org/10.1093/nar/gkg527
36 https://doi.org/10.1101/gr.10.4.483
37 https://doi.org/10.1101/gr.10.4.511
38 https://doi.org/10.1101/gr.361602
39 schema:datePublished 2004-12
40 schema:datePublishedReg 2004-12-01
41 schema:description BACKGROUND: Computational gene prediction continues to be an important problem, especially for genomes with little experimental data. RESULTS: I introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate. CONCLUSION: Since gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N0a708347f74d4d30b923ae32a7bee9c2
46 N3dc05c43d6c943458d5f7408a1097cd4
47 sg:journal.1023786
48 schema:name Gene finding in novel genomes
49 schema:pagination 59
50 schema:productId N3b968362b0af48da9754a2c85439f7f3
51 N988cba94e41e4a3493bd4e612e3b1b8b
52 N9a2c65acb532439c82b9e31539729712
53 Na6141f87f3ae44998fd317bf872a813a
54 Nda498525e5bf4e6d9997f9d2cb944ef1
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042217342
56 https://doi.org/10.1186/1471-2105-5-59
57 schema:sdDatePublished 2019-04-11T10:28
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nf1d9546275f540e1b034a69cf04615ea
60 schema:url https://link.springer.com/10.1186%2F1471-2105-5-59
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N00c0b07985e341f6b7db7b464673a41f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Genome
66 rdf:type schema:DefinedTerm
67 N0a708347f74d4d30b923ae32a7bee9c2 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N21815fd4feff491e98d472b2e5def420 rdf:first sg:person.01063041236.78
70 rdf:rest rdf:nil
71 N25276181e3864ac3bd039180ad04bcc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Genome, Plant
73 rdf:type schema:DefinedTerm
74 N2ad64d2fca2c4cb4989abffc729043ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Software
76 rdf:type schema:DefinedTerm
77 N3b968362b0af48da9754a2c85439f7f3 schema:name readcube_id
78 schema:value c91a589d82eeaf15a0252ac63c0b6f4e9d60501ad402f529b59571ed54a253f3
79 rdf:type schema:PropertyValue
80 N3dc05c43d6c943458d5f7408a1097cd4 schema:volumeNumber 5
81 rdf:type schema:PublicationVolume
82 N429ad8042b5e490d95818afbb61cc44f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Caenorhabditis elegans
84 rdf:type schema:DefinedTerm
85 N49d717d48ae94b8886144a2cafd57664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Databases, Genetic
87 rdf:type schema:DefinedTerm
88 N988cba94e41e4a3493bd4e612e3b1b8b schema:name pubmed_id
89 schema:value 15144565
90 rdf:type schema:PropertyValue
91 N9a2c65acb532439c82b9e31539729712 schema:name nlm_unique_id
92 schema:value 100965194
93 rdf:type schema:PropertyValue
94 Na30ece3a20c7478c83515ef62d1b2b50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Computational Biology
96 rdf:type schema:DefinedTerm
97 Na6141f87f3ae44998fd317bf872a813a schema:name dimensions_id
98 schema:value pub.1042217342
99 rdf:type schema:PropertyValue
100 Na6c00ae85b50405fa914d9c7593d5f9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Animals
102 rdf:type schema:DefinedTerm
103 Nac7edd981e6f4526b46d05bac2121eed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genes, Plant
105 rdf:type schema:DefinedTerm
106 Nacf00f63091a46309417eb0802d06ceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Predictive Value of Tests
108 rdf:type schema:DefinedTerm
109 Nbc08c0efdc4842b2bbf4a9dbd3ab676e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Genes, Insect
111 rdf:type schema:DefinedTerm
112 Nd4936525afb7468ea646343f7c7e2734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Drosophila melanogaster
114 rdf:type schema:DefinedTerm
115 Nda498525e5bf4e6d9997f9d2cb944ef1 schema:name doi
116 schema:value 10.1186/1471-2105-5-59
117 rdf:type schema:PropertyValue
118 Ne1cc4343b3e8465fa57b8263a66334e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genes
120 rdf:type schema:DefinedTerm
121 Ne8afa9ac05314170be30079968496757 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Genetic Variation
123 rdf:type schema:DefinedTerm
124 Nead1a66ca5054802b339380b9dbb918b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Genes, Helminth
126 rdf:type schema:DefinedTerm
127 Nf1d9546275f540e1b034a69cf04615ea schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nf7677649208d4e4b81a6a65d58365e06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Arabidopsis
131 rdf:type schema:DefinedTerm
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
136 schema:name Genetics
137 rdf:type schema:DefinedTerm
138 sg:journal.1023786 schema:issn 1471-2105
139 schema:name BMC Bioinformatics
140 rdf:type schema:Periodical
141 sg:person.01063041236.78 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
142 schema:familyName Korf
143 schema:givenName Ian
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063041236.78
145 rdf:type schema:Person
146 sg:pub.10.1007/s003350010039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008076660
147 https://doi.org/10.1007/s003350010039
148 rdf:type schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1082984657 schema:CreativeWork
150 https://app.dimensions.ai/details/publication/pub.1083156239 schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1083156258 schema:CreativeWork
152 https://doi.org/10.1006/jmbi.1997.0951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028174721
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0166-6851(01)00363-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037596155
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0378-1119(99)00079-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023224983
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0959-437x(00)00250-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026245412
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0960-9822(98)70286-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039330966
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.201407298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026876373
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/16.11.1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047590604
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/17.10.901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035846396
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/btg1080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008613513
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/nar/30.1.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027870504
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/nar/30.5.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042341978
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/nar/gkg527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021290478
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1101/gr.10.4.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024470556
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1101/gr.10.4.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039597681
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1101/gr.361602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028020859
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
185 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...