Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12

AUTHORS

Hong-Wu Ma, Jan Buer, An-Ping Zeng

ABSTRACT

BACKGROUND: Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN) of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. RESULTS: In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif) in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. CONCLUSION: The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E. coli. Analysis of the distribution of feed forward loops and bi-fan motifs in the hierarchical structure suggests that these network motifs are not elementary building blocks of functional modules in the transcriptional regulatory network of E. coli. More... »

PAGES

199

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-5-199

DOI

http://dx.doi.org/10.1186/1471-2105-5-199

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015481224

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15603590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Regulator", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Genome Analysis, GBF \u2013 German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Hong-Wu", 
        "id": "sg:person.01263776117.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263776117.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hannover Medical School", 
          "id": "https://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Department of Mucosal Immunity, GBF \u2013 German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany", 
            "Medical Microbiology and Hospital Hygiene, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buer", 
        "givenName": "Jan", 
        "id": "sg:person.01052021315.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052021315.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Genome Analysis, GBF \u2013 German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "An-Ping", 
        "id": "sg:person.01032360100.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032360100.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2004.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003820027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003833573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003833573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005547506", 
          "https://doi.org/10.1038/ng1181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005547506", 
          "https://doi.org/10.1038/ng1181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006710665", 
          "https://doi.org/10.1038/ng1165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006710665", 
          "https://doi.org/10.1038/ng1165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.182.15.4129-4136.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008488576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2003.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009874928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010241339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015376371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5274(03)00033-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018350532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5274(03)00033-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018350532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019498862", 
          "https://doi.org/10.1038/35011540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019498862", 
          "https://doi.org/10.1038/35011540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019781582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021670625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024852980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028650634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028732798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1387003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028831124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.234503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031088957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1330003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031971733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.298.5594.824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-5-317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034117842", 
          "https://doi.org/10.1186/gb-2003-4-5-317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040007205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1969504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040145823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041301738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042444027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0308661100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044954081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045710089", 
          "https://doi.org/10.1186/1471-2105-5-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045710089", 
          "https://doi.org/10.1186/1471-2105-5-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051056710", 
          "https://doi.org/10.1038/nbt890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051056710", 
          "https://doi.org/10.1038/nbt890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052702277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1089118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448520"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "BACKGROUND: Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN) of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear.\nRESULTS: In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif) in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators.\nCONCLUSION: The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E. coli. Analysis of the distribution of feed forward loops and bi-fan motifs in the hierarchical structure suggests that these network motifs are not elementary building blocks of functional modules in the transcriptional regulatory network of E. coli.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-5-199", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach", 
    "pagination": "199", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49c2dcbfdad54bc30849cfd7c45eb56bd7ea7d144116a1652d8e81e0c34aea45"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15603590"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-5-199"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015481224"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-5-199", 
      "https://app.dimensions.ai/details/publication/pub.1015481224"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-5-199"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-199'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-199'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-199'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-199'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      76 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-5-199 schema:about N0c7b765909a34f2a806b317af759b654
2 N15721a7d766b4c5281c7f12dd212f10c
3 N26bc957eba8f4fc8ad4b7dae5e96d820
4 N6738e8ff44b143a49f6aa7ff92e9462b
5 N7776123426db416d822b017ad8544786
6 N7baaa7500ef640c4a7a13f75507b174c
7 N8a721cd7f4104da2ad0e89c5d7933859
8 N9ead15c59bf74a53b4bad816f8ef6a75
9 Nb4ebefa86b0f45ca9780675f41af4fd9
10 Nc335c4b13ebc4d6abd90e518ee6f90f0
11 Nc72208234a1449c783c0720f833c5511
12 Ndc9a63ca452a483abec0b14a8d20cd7b
13 Nee5d965216a44d00bdf21ee15e9ea2f9
14 Nef7fbee5787f4bcf81ddedef4062abad
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author N34f124f000114611a71d57b601effd61
18 schema:citation sg:pub.10.1038/35011540
19 sg:pub.10.1038/nbt890
20 sg:pub.10.1038/ng1165
21 sg:pub.10.1038/ng1181
22 sg:pub.10.1038/ng873
23 sg:pub.10.1038/ng881
24 sg:pub.10.1038/nrg1272
25 sg:pub.10.1186/1471-2105-5-10
26 sg:pub.10.1186/gb-2003-4-5-317
27 https://doi.org/10.1002/prot.10505
28 https://doi.org/10.1016/j.copbio.2003.11.002
29 https://doi.org/10.1016/j.mib.2003.09.002
30 https://doi.org/10.1016/j.sbi.2004.05.004
31 https://doi.org/10.1016/s1369-5274(03)00033-x
32 https://doi.org/10.1073/pnas.0308661100
33 https://doi.org/10.1093/bioinformatics/18.2.351
34 https://doi.org/10.1093/bioinformatics/19.2.270
35 https://doi.org/10.1093/bioinformatics/btg177
36 https://doi.org/10.1093/bioinformatics/bth167
37 https://doi.org/10.1093/nar/28.1.60
38 https://doi.org/10.1093/nar/gkg108
39 https://doi.org/10.1093/nar/gkg210
40 https://doi.org/10.1093/nar/gkg838
41 https://doi.org/10.1093/nar/gkh140
42 https://doi.org/10.1101/gr.1330003
43 https://doi.org/10.1101/gr.1387003
44 https://doi.org/10.1101/gr.1969504
45 https://doi.org/10.1101/gr.234503
46 https://doi.org/10.1126/science.1073374
47 https://doi.org/10.1126/science.1075090
48 https://doi.org/10.1126/science.1089118
49 https://doi.org/10.1126/science.298.5594.824
50 https://doi.org/10.1128/jb.182.15.4129-4136.2000
51 schema:datePublished 2004-12
52 schema:datePublishedReg 2004-12-01
53 schema:description BACKGROUND: Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN) of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. RESULTS: In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif) in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. CONCLUSION: The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E. coli. Analysis of the distribution of feed forward loops and bi-fan motifs in the hierarchical structure suggests that these network motifs are not elementary building blocks of functional modules in the transcriptional regulatory network of E. coli.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf Na93a3ecafad24498955f8bfc918356eb
58 Nfb31bfb36b3a4ce4a7043a6475c33244
59 sg:journal.1023786
60 schema:name Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach
61 schema:pagination 199
62 schema:productId N6ab23462e25d417f969a4640c31260b5
63 N7ff77739ab684db5b7313a7cf9945771
64 N9a79ceae1f8644a1a2efbe14912fbc31
65 Naf6b78e4d3a145e9a8070a39aa6adc4c
66 Nc49f0fdc7ad1449aa7c65efdd3d27b93
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015481224
68 https://doi.org/10.1186/1471-2105-5-199
69 schema:sdDatePublished 2019-04-10T17:29
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N76ef9e33c5794a7fae5287c610e9e3ff
72 schema:url http://link.springer.com/10.1186%2F1471-2105-5-199
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N0226bcc7663640af9294344850b65124 rdf:first sg:person.01052021315.45
77 rdf:rest Nf3937696cd784375b29adfd0c6bf8be1
78 N0c7b765909a34f2a806b317af759b654 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Systems Biology
80 rdf:type schema:DefinedTerm
81 N1313e76d492443a697e275151300a671 schema:name Department of Genome Analysis, GBF – German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany
82 rdf:type schema:Organization
83 N15721a7d766b4c5281c7f12dd212f10c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Amino Acid Motifs
85 rdf:type schema:DefinedTerm
86 N26bc957eba8f4fc8ad4b7dae5e96d820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Models, Biological
88 rdf:type schema:DefinedTerm
89 N34f124f000114611a71d57b601effd61 rdf:first sg:person.01263776117.99
90 rdf:rest N0226bcc7663640af9294344850b65124
91 N6738e8ff44b143a49f6aa7ff92e9462b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Cluster Analysis
93 rdf:type schema:DefinedTerm
94 N6ab23462e25d417f969a4640c31260b5 schema:name doi
95 schema:value 10.1186/1471-2105-5-199
96 rdf:type schema:PropertyValue
97 N76ef9e33c5794a7fae5287c610e9e3ff schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N7776123426db416d822b017ad8544786 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Transcription, Genetic
101 rdf:type schema:DefinedTerm
102 N7baaa7500ef640c4a7a13f75507b174c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Escherichia coli Proteins
104 rdf:type schema:DefinedTerm
105 N7ff77739ab684db5b7313a7cf9945771 schema:name readcube_id
106 schema:value 49c2dcbfdad54bc30849cfd7c45eb56bd7ea7d144116a1652d8e81e0c34aea45
107 rdf:type schema:PropertyValue
108 N8a721cd7f4104da2ad0e89c5d7933859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Base Composition
110 rdf:type schema:DefinedTerm
111 N92efd218864c4dc188686193c297b877 schema:name Department of Genome Analysis, GBF – German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany
112 rdf:type schema:Organization
113 N9a79ceae1f8644a1a2efbe14912fbc31 schema:name pubmed_id
114 schema:value 15603590
115 rdf:type schema:PropertyValue
116 N9ead15c59bf74a53b4bad816f8ef6a75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Genes, Bacterial
118 rdf:type schema:DefinedTerm
119 Na93a3ecafad24498955f8bfc918356eb schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 Naf6b78e4d3a145e9a8070a39aa6adc4c schema:name nlm_unique_id
122 schema:value 100965194
123 rdf:type schema:PropertyValue
124 Nb4ebefa86b0f45ca9780675f41af4fd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name DNA, Bacterial
126 rdf:type schema:DefinedTerm
127 Nc335c4b13ebc4d6abd90e518ee6f90f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Software
129 rdf:type schema:DefinedTerm
130 Nc49f0fdc7ad1449aa7c65efdd3d27b93 schema:name dimensions_id
131 schema:value pub.1015481224
132 rdf:type schema:PropertyValue
133 Nc72208234a1449c783c0720f833c5511 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Escherichia coli
135 rdf:type schema:DefinedTerm
136 Ndc9a63ca452a483abec0b14a8d20cd7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Genes, Regulator
138 rdf:type schema:DefinedTerm
139 Nee5d965216a44d00bdf21ee15e9ea2f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Gene Expression Regulation, Bacterial
141 rdf:type schema:DefinedTerm
142 Nef7fbee5787f4bcf81ddedef4062abad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Computational Biology
144 rdf:type schema:DefinedTerm
145 Nf3937696cd784375b29adfd0c6bf8be1 rdf:first sg:person.01032360100.54
146 rdf:rest rdf:nil
147 Nfb31bfb36b3a4ce4a7043a6475c33244 schema:volumeNumber 5
148 rdf:type schema:PublicationVolume
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biochemistry and Cell Biology
154 rdf:type schema:DefinedTerm
155 sg:journal.1023786 schema:issn 1471-2105
156 schema:name BMC Bioinformatics
157 rdf:type schema:Periodical
158 sg:person.01032360100.54 schema:affiliation N92efd218864c4dc188686193c297b877
159 schema:familyName Zeng
160 schema:givenName An-Ping
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032360100.54
162 rdf:type schema:Person
163 sg:person.01052021315.45 schema:affiliation https://www.grid.ac/institutes/grid.10423.34
164 schema:familyName Buer
165 schema:givenName Jan
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052021315.45
167 rdf:type schema:Person
168 sg:person.01263776117.99 schema:affiliation N1313e76d492443a697e275151300a671
169 schema:familyName Ma
170 schema:givenName Hong-Wu
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263776117.99
172 rdf:type schema:Person
173 sg:pub.10.1038/35011540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019498862
174 https://doi.org/10.1038/35011540
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nbt890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051056710
177 https://doi.org/10.1038/nbt890
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ng1165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006710665
180 https://doi.org/10.1038/ng1165
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ng1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005547506
183 https://doi.org/10.1038/ng1181
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046040073
186 https://doi.org/10.1038/ng873
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
189 https://doi.org/10.1038/ng881
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
192 https://doi.org/10.1038/nrg1272
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-5-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045710089
195 https://doi.org/10.1186/1471-2105-5-10
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/gb-2003-4-5-317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034117842
198 https://doi.org/10.1186/gb-2003-4-5-317
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/prot.10505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021670625
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.copbio.2003.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009874928
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.mib.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003833573
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.sbi.2004.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003820027
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s1369-5274(03)00033-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018350532
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1073/pnas.0308661100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044954081
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/18.2.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052702277
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/19.2.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028650634
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/btg177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040007205
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/bth167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015376371
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/28.1.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010241339
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/gkg108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042444027
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gkg210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024852980
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkg838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041301738
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/nar/gkh140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028732798
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1101/gr.1330003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031971733
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1101/gr.1387003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028831124
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1101/gr.1969504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040145823
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1101/gr.234503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031088957
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1089118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448520
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1128/jb.182.15.4129-4136.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008488576
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.10423.34 schema:alternateName Hannover Medical School
249 schema:name Department of Mucosal Immunity, GBF – German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany
250 Medical Microbiology and Hospital Hygiene, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...