Discriminative topological features reveal biological network mechanisms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-11-22

AUTHORS

Manuel Middendorf, Etay Ziv, Carter Adams, Jen Hom, Robin Koytcheff, Chaya Levovitz, Gregory Woods, Linda Chen, Chris Wiggins

ABSTRACT

BackgroundRecent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them.ResultsWe present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional) "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model.ConclusionsOur method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities. More... »

PAGES

181

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-5-181

DOI

http://dx.doi.org/10.1186/1471-2105-5-181

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040330355

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15555081


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli K12", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physics, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Middendorf", 
        "givenName": "Manuel", 
        "id": "sg:person.01352442576.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352442576.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Physicians and Surgeons, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "College of Physicians and Surgeons, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziv", 
        "givenName": "Etay", 
        "id": "sg:person.0672434217.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672434217.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia College, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Columbia College, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adams", 
        "givenName": "Carter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hom", 
        "givenName": "Jen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koytcheff", 
        "givenName": "Robin", 
        "id": "sg:person.012031151300.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031151300.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Barnard College, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.470930.9", 
          "name": [
            "Barnard College, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levovitz", 
        "givenName": "Chaya", 
        "id": "sg:person.01024004604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024004604.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia College, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Columbia College, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woods", 
        "givenName": "Gregory", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Mathematics, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Linda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Computational Biology and Bioinformatics, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA", 
            "Center for Computational Biology and Bioinformatics, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiggins", 
        "givenName": "Chris", 
        "id": "sg:person.010232670657.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232670657.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/30319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015520815", 
          "https://doi.org/10.1038/30319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033442686", 
          "https://doi.org/10.1038/ng1242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009550067", 
          "https://doi.org/10.1038/43601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038990326", 
          "https://doi.org/10.1038/35075138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-11-22", 
    "datePublishedReg": "2004-11-22", 
    "description": "BackgroundRecent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them.ResultsWe present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional) \"word space\". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model.ConclusionsOur method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-5-181", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3042037", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3463772", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "linear preferential attachment model", 
      "preferential attachment model", 
      "network model", 
      "small-world model", 
      "C. elegans neuronal network", 
      "real-world networks", 
      "geodesic length", 
      "network generation algorithm", 
      "degree distribution", 
      "world networks", 
      "pairs of models", 
      "networks of interest", 
      "input space", 
      "predictive description", 
      "biological networks", 
      "topological features", 
      "accurate description", 
      "attachment model", 
      "number of communities", 
      "graph", 
      "real-world data", 
      "network generation", 
      "different models", 
      "genetic networks", 
      "generation algorithm", 
      "scheme", 
      "algorithm", 
      "space", 
      "set", 
      "model", 
      "network", 
      "description", 
      "Bioinformatics Advances", 
      "neuronal networks", 
      "training set", 
      "key features", 
      "protein interaction networks", 
      "first step", 
      "target features", 
      "classification scheme", 
      "coefficient", 
      "word space", 
      "discriminative classifier", 
      "distribution", 
      "cases", 
      "such cases", 
      "interaction networks", 
      "features", 
      "network mechanisms", 
      "fidelity", 
      "interest", 
      "maps", 
      "number", 
      "state", 
      "mapping", 
      "pairs", 
      "most cases", 
      "work", 
      "step", 
      "predictability", 
      "length", 
      "usefulness", 
      "generation", 
      "data", 
      "literature", 
      "sociological origins", 
      "advances", 
      "origin", 
      "classifier", 
      "ConclusionsOur method", 
      "mechanism", 
      "different mechanisms", 
      "development", 
      "success", 
      "method", 
      "community", 
      "ResultsWe", 
      "BackgroundRecent"
    ], 
    "name": "Discriminative topological features reveal biological network mechanisms", 
    "pagination": "181", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040330355"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-5-181"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15555081"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-5-181", 
      "https://app.dimensions.ai/details/publication/pub.1040330355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_378.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-5-181"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-181'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-181'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-181'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-181'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      21 PREDICATES      121 URIs      107 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-5-181 schema:about N21cbfebc2c1b48fea8dfcb59649f43b6
2 N2244f6bc6af04918ad095b6fdda300fb
3 N2764d608b5764a66816da534c957e849
4 N31bad7e464b84744826452979e131426
5 N84a9f94813b64daf929abe987913f978
6 N8d76246d1db149bf985a0dc7670fc1dd
7 N8f9d67ef4e9f4d45b235275576dd9002
8 N900a24518c6b4e818c541533593700bb
9 Nab92a757635a4778b8a0992f95b9c9f5
10 Nc8b9462977ce4628b1311d3ad445c340
11 Ncbbf3bcdd2e447f8862302f4c9db1374
12 Ne2f4448a679d4946b13d62564bfda6e4
13 anzsrc-for:08
14 anzsrc-for:0806
15 schema:author N09a13d50032542e29cdabeae27267a14
16 schema:citation sg:pub.10.1038/30319
17 sg:pub.10.1038/30918
18 sg:pub.10.1038/35075138
19 sg:pub.10.1038/43601
20 sg:pub.10.1038/ng1242
21 sg:pub.10.1038/ng881
22 schema:datePublished 2004-11-22
23 schema:datePublishedReg 2004-11-22
24 schema:description BackgroundRecent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them.ResultsWe present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional) "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model.ConclusionsOur method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N22ab776b2bb24646ae9493857bcc9219
28 Nb3882c740f0b4a41a94410e3adfe4539
29 sg:journal.1023786
30 schema:keywords BackgroundRecent
31 Bioinformatics Advances
32 C. elegans neuronal network
33 ConclusionsOur method
34 ResultsWe
35 accurate description
36 advances
37 algorithm
38 attachment model
39 biological networks
40 cases
41 classification scheme
42 classifier
43 coefficient
44 community
45 data
46 degree distribution
47 description
48 development
49 different mechanisms
50 different models
51 discriminative classifier
52 distribution
53 features
54 fidelity
55 first step
56 generation
57 generation algorithm
58 genetic networks
59 geodesic length
60 graph
61 input space
62 interaction networks
63 interest
64 key features
65 length
66 linear preferential attachment model
67 literature
68 mapping
69 maps
70 mechanism
71 method
72 model
73 most cases
74 network
75 network generation
76 network generation algorithm
77 network mechanisms
78 network model
79 networks of interest
80 neuronal networks
81 number
82 number of communities
83 origin
84 pairs
85 pairs of models
86 predictability
87 predictive description
88 preferential attachment model
89 protein interaction networks
90 real-world data
91 real-world networks
92 scheme
93 set
94 small-world model
95 sociological origins
96 space
97 state
98 step
99 success
100 such cases
101 target features
102 topological features
103 training set
104 usefulness
105 word space
106 work
107 world networks
108 schema:name Discriminative topological features reveal biological network mechanisms
109 schema:pagination 181
110 schema:productId N989e2070249148cb81a3692ae4492957
111 Nb012e87458ca4404909fd8643c236044
112 Ncba916637514422e967deb6f7e979a8e
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040330355
114 https://doi.org/10.1186/1471-2105-5-181
115 schema:sdDatePublished 2022-12-01T06:24
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher N9df932e609a74c7ca7c1e5ad3566bad3
118 schema:url https://doi.org/10.1186/1471-2105-5-181
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N09a13d50032542e29cdabeae27267a14 rdf:first sg:person.01352442576.11
123 rdf:rest Ned7d89eacf80425f8574b162b18ca886
124 N21cbfebc2c1b48fea8dfcb59649f43b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Nerve Net
126 rdf:type schema:DefinedTerm
127 N2244f6bc6af04918ad095b6fdda300fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Animals
129 rdf:type schema:DefinedTerm
130 N22ab776b2bb24646ae9493857bcc9219 schema:volumeNumber 5
131 rdf:type schema:PublicationVolume
132 N2764d608b5764a66816da534c957e849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Caenorhabditis elegans
134 rdf:type schema:DefinedTerm
135 N31bad7e464b84744826452979e131426 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Saccharomyces cerevisiae Proteins
137 rdf:type schema:DefinedTerm
138 N5467aa18382b45d18aa6bb4b263af3be rdf:first sg:person.01024004604.05
139 rdf:rest N6222ae865cc640a4bc4243d5b4153068
140 N6222ae865cc640a4bc4243d5b4153068 rdf:first Ndca384f050e349b0b922e01e96ebe901
141 rdf:rest N7e91b654dfc84eb193e77ee3d348c266
142 N76b46b58e23547279a7d24cb4cf7391b rdf:first Nadbb1798acf84bcdbfdb3d45ac8cd2a1
143 rdf:rest N8a28c77034c14041b4e13d85d4cc1eb4
144 N7e91b654dfc84eb193e77ee3d348c266 rdf:first N855abea0816a47f0814b6f7ee992d871
145 rdf:rest Nb55166c61a5a4da09dc8ab4c30a6fd46
146 N84a9f94813b64daf929abe987913f978 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Protein Interaction Mapping
148 rdf:type schema:DefinedTerm
149 N855abea0816a47f0814b6f7ee992d871 schema:affiliation grid-institutes:grid.21729.3f
150 schema:familyName Chen
151 schema:givenName Linda
152 rdf:type schema:Person
153 N8a28c77034c14041b4e13d85d4cc1eb4 rdf:first N98d0c89eeb224523aeb883bcb704bc3a
154 rdf:rest Na8abf69ef69e4117a989fbd44d43e1fb
155 N8d76246d1db149bf985a0dc7670fc1dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Models, Genetic
157 rdf:type schema:DefinedTerm
158 N8f9d67ef4e9f4d45b235275576dd9002 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Models, Biological
160 rdf:type schema:DefinedTerm
161 N900a24518c6b4e818c541533593700bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Models, Neurological
163 rdf:type schema:DefinedTerm
164 N989e2070249148cb81a3692ae4492957 schema:name doi
165 schema:value 10.1186/1471-2105-5-181
166 rdf:type schema:PropertyValue
167 N98d0c89eeb224523aeb883bcb704bc3a schema:affiliation grid-institutes:grid.21729.3f
168 schema:familyName Hom
169 schema:givenName Jen
170 rdf:type schema:Person
171 N9df932e609a74c7ca7c1e5ad3566bad3 schema:name Springer Nature - SN SciGraph project
172 rdf:type schema:Organization
173 Na8abf69ef69e4117a989fbd44d43e1fb rdf:first sg:person.012031151300.96
174 rdf:rest N5467aa18382b45d18aa6bb4b263af3be
175 Nab92a757635a4778b8a0992f95b9c9f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Escherichia coli K12
177 rdf:type schema:DefinedTerm
178 Nadbb1798acf84bcdbfdb3d45ac8cd2a1 schema:affiliation grid-institutes:grid.21729.3f
179 schema:familyName Adams
180 schema:givenName Carter
181 rdf:type schema:Person
182 Nb012e87458ca4404909fd8643c236044 schema:name dimensions_id
183 schema:value pub.1040330355
184 rdf:type schema:PropertyValue
185 Nb3882c740f0b4a41a94410e3adfe4539 schema:issueNumber 1
186 rdf:type schema:PublicationIssue
187 Nb55166c61a5a4da09dc8ab4c30a6fd46 rdf:first sg:person.010232670657.54
188 rdf:rest rdf:nil
189 Nc8b9462977ce4628b1311d3ad445c340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Neural Networks, Computer
191 rdf:type schema:DefinedTerm
192 Ncba916637514422e967deb6f7e979a8e schema:name pubmed_id
193 schema:value 15555081
194 rdf:type schema:PropertyValue
195 Ncbbf3bcdd2e447f8862302f4c9db1374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Computational Biology
197 rdf:type schema:DefinedTerm
198 Ndca384f050e349b0b922e01e96ebe901 schema:affiliation grid-institutes:grid.21729.3f
199 schema:familyName Woods
200 schema:givenName Gregory
201 rdf:type schema:Person
202 Ne2f4448a679d4946b13d62564bfda6e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Saccharomyces cerevisiae
204 rdf:type schema:DefinedTerm
205 Ned7d89eacf80425f8574b162b18ca886 rdf:first sg:person.0672434217.56
206 rdf:rest N76b46b58e23547279a7d24cb4cf7391b
207 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
208 schema:name Information and Computing Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
211 schema:name Information Systems
212 rdf:type schema:DefinedTerm
213 sg:grant.3042037 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-5-181
214 rdf:type schema:MonetaryGrant
215 sg:grant.3463772 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-5-181
216 rdf:type schema:MonetaryGrant
217 sg:journal.1023786 schema:issn 1471-2105
218 schema:name BMC Bioinformatics
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.010232670657.54 schema:affiliation grid-institutes:grid.21729.3f
222 schema:familyName Wiggins
223 schema:givenName Chris
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232670657.54
225 rdf:type schema:Person
226 sg:person.01024004604.05 schema:affiliation grid-institutes:grid.470930.9
227 schema:familyName Levovitz
228 schema:givenName Chaya
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024004604.05
230 rdf:type schema:Person
231 sg:person.012031151300.96 schema:affiliation grid-institutes:grid.21729.3f
232 schema:familyName Koytcheff
233 schema:givenName Robin
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031151300.96
235 rdf:type schema:Person
236 sg:person.01352442576.11 schema:affiliation grid-institutes:grid.21729.3f
237 schema:familyName Middendorf
238 schema:givenName Manuel
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352442576.11
240 rdf:type schema:Person
241 sg:person.0672434217.56 schema:affiliation grid-institutes:grid.21729.3f
242 schema:familyName Ziv
243 schema:givenName Etay
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672434217.56
245 rdf:type schema:Person
246 sg:pub.10.1038/30319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015520815
247 https://doi.org/10.1038/30319
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
250 https://doi.org/10.1038/30918
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/35075138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038990326
253 https://doi.org/10.1038/35075138
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/43601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550067
256 https://doi.org/10.1038/43601
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/ng1242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033442686
259 https://doi.org/10.1038/ng1242
260 rdf:type schema:CreativeWork
261 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
262 https://doi.org/10.1038/ng881
263 rdf:type schema:CreativeWork
264 grid-institutes:grid.21729.3f schema:alternateName Center for Computational Biology and Bioinformatics, Columbia University, New York, USA
265 College of Physicians and Surgeons, Columbia University, New York, USA
266 Columbia College, Columbia University, New York, USA
267 Department of Mathematics, Columbia University, New York, USA
268 Department of Physics, Columbia University, New York, USA
269 Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, USA
270 schema:name Center for Computational Biology and Bioinformatics, Columbia University, New York, USA
271 College of Physicians and Surgeons, Columbia University, New York, USA
272 Columbia College, Columbia University, New York, USA
273 Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA
274 Department of Mathematics, Columbia University, New York, USA
275 Department of Physics, Columbia University, New York, USA
276 Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, USA
277 rdf:type schema:Organization
278 grid-institutes:grid.470930.9 schema:alternateName Barnard College, Columbia University, New York, USA
279 schema:name Barnard College, Columbia University, New York, USA
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...