TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-10-26

AUTHORS

Hanno Teeling, Jost Waldmann, Thierry Lombardot, Margarete Bauer, Frank Oliver Glöckner

ABSTRACT

BACKGROUND: In the emerging field of environmental genomics, direct cloning and sequencing of genomic fragments from complex microbial communities has proven to be a valuable source of new enzymes, expanding the knowledge of basic biological processes. The central problem of this so called metagenome-approach is that the cloned fragments often lack suitable phylogenetic marker genes, rendering the identification of clones that are likely to originate from the same genome difficult or impossible. In such cases, the analysis of intrinsic DNA-signatures like tetranucleotide frequencies can provide valuable hints on fragment affiliation. With this application in mind, the TETRA web-service and the TETRA stand-alone program have been developed, both of which automate the task of comparative tetranucleotide frequency analysis. AVAILABILITY: http://www.megx.net/tetra. RESULTS: TETRA provides a statistical analysis of tetranucleotide usage patterns in genomic fragments, either via a web-service or a stand-alone program. With respect to discriminatory power, such an analysis outperforms the assignment of genomic fragments based on the (G+C)-content, which is a widely-used sequence-based measure for assessing fragment relatedness. While the web-service is restricted to the calculation of correlation coefficients between tetranucleotide usage patterns of submitted DNA sequences, the stand-alone program generates a much more detailed output, comprising all raw data and graphical plots. The stand-alone program is controlled via a graphical user interface and can batch-process a multitude of sequences. Furthermore, it comes with pre-computed tetranucleotide usage patterns for 166 prokaryote chromosomes, providing a useful reference dataset and source for data-mining. CONCLUSIONS: Up to now, the analysis of skewed oligonucleotide distributions within DNA sequences is not a commonly used tool within metagenomics. With the TETRA web-service and stand-alone program, the method is now accessible in an easy to use manner for a broad audience. This will hopefully facilitate the interrelation of genomic fragments from metagenome libraries, ultimately leading to new insights into the genetic potentials of yet uncultured microorganisms. More... »

PAGES

163-163

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-5-163

DOI

http://dx.doi.org/10.1186/1471-2105-5-163

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017298406

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15507136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bradyrhizobium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsatellite Repeats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prochlorococcus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Shigella", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sinorhizobium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yersinia", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419529.2", 
          "name": [
            "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teeling", 
        "givenName": "Hanno", 
        "id": "sg:person.01061602127.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061602127.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419529.2", 
          "name": [
            "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waldmann", 
        "givenName": "Jost", 
        "id": "sg:person.0773131453.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773131453.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419529.2", 
          "name": [
            "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lombardot", 
        "givenName": "Thierry", 
        "id": "sg:person.01176760552.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176760552.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419529.2", 
          "name": [
            "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "Margarete", 
        "id": "sg:person.07442577202.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07442577202.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International University Bremen, D-28759 Bremen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.15078.3b", 
          "name": [
            "Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany", 
            "International University Bremen, D-28759 Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gl\u00f6ckner", 
        "givenName": "Frank Oliver", 
        "id": "sg:person.0764345020.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764345020.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35081051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042650430", 
          "https://doi.org/10.1038/35081051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023089166", 
          "https://doi.org/10.1038/nature02340"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10-26", 
    "datePublishedReg": "2004-10-26", 
    "description": "BACKGROUND: In the emerging field of environmental genomics, direct cloning and sequencing of genomic fragments from complex microbial communities has proven to be a valuable source of new enzymes, expanding the knowledge of basic biological processes. The central problem of this so called metagenome-approach is that the cloned fragments often lack suitable phylogenetic marker genes, rendering the identification of clones that are likely to originate from the same genome difficult or impossible. In such cases, the analysis of intrinsic DNA-signatures like tetranucleotide frequencies can provide valuable hints on fragment affiliation. With this application in mind, the TETRA web-service and the TETRA stand-alone program have been developed, both of which automate the task of comparative tetranucleotide frequency analysis.\nAVAILABILITY: http://www.megx.net/tetra.\nRESULTS: TETRA provides a statistical analysis of tetranucleotide usage patterns in genomic fragments, either via a web-service or a stand-alone program. With respect to discriminatory power, such an analysis outperforms the assignment of genomic fragments based on the (G+C)-content, which is a widely-used sequence-based measure for assessing fragment relatedness. While the web-service is restricted to the calculation of correlation coefficients between tetranucleotide usage patterns of submitted DNA sequences, the stand-alone program generates a much more detailed output, comprising all raw data and graphical plots. The stand-alone program is controlled via a graphical user interface and can batch-process a multitude of sequences. Furthermore, it comes with pre-computed tetranucleotide usage patterns for 166 prokaryote chromosomes, providing a useful reference dataset and source for data-mining.\nCONCLUSIONS: Up to now, the analysis of skewed oligonucleotide distributions within DNA sequences is not a commonly used tool within metagenomics. With the TETRA web-service and stand-alone program, the method is now accessible in an easy to use manner for a broad audience. This will hopefully facilitate the interrelation of genomic fragments from metagenome libraries, ultimately leading to new insights into the genetic potentials of yet uncultured microorganisms.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-5-163", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "tetranucleotide usage patterns", 
      "genomic fragment", 
      "DNA sequences", 
      "phylogenetic marker genes", 
      "complex microbial communities", 
      "multitude of sequences", 
      "basic biological processes", 
      "useful reference dataset", 
      "identification of clones", 
      "sequence-based measures", 
      "environmental genomics", 
      "uncultured microorganisms", 
      "same genome", 
      "tetranucleotide frequencies", 
      "microbial communities", 
      "metagenome library", 
      "marker genes", 
      "DNA signatures", 
      "biological processes", 
      "genetic potential", 
      "new enzyme", 
      "direct cloning", 
      "sequence", 
      "oligonucleotide distribution", 
      "new insights", 
      "fragments", 
      "genome", 
      "genomics", 
      "metagenomics", 
      "valuable source", 
      "chromosomes", 
      "cloning", 
      "valuable hints", 
      "genes", 
      "stand-alone programs", 
      "sequencing", 
      "reference dataset", 
      "clones", 
      "relatedness", 
      "microorganisms", 
      "enzyme", 
      "patterns", 
      "usage patterns", 
      "discriminatory power", 
      "identification", 
      "library", 
      "analysis", 
      "insights", 
      "community", 
      "manner", 
      "tetra", 
      "multitude", 
      "central problem", 
      "plots", 
      "source", 
      "potential", 
      "affiliation", 
      "content", 
      "distribution", 
      "process", 
      "hints", 
      "knowledge", 
      "assignment", 
      "tool", 
      "dataset", 
      "program", 
      "data", 
      "raw data", 
      "comparison", 
      "statistical analysis", 
      "detailed output", 
      "respect", 
      "frequency", 
      "graphical user interface", 
      "interrelations", 
      "field", 
      "interface", 
      "applications", 
      "broad audience", 
      "method", 
      "correlation coefficient", 
      "output", 
      "frequency analysis", 
      "graphical plots", 
      "such cases", 
      "measures", 
      "cases", 
      "user interface", 
      "coefficient", 
      "power", 
      "problem", 
      "mind", 
      "task", 
      "calculations", 
      "audience", 
      "suitable phylogenetic marker genes", 
      "intrinsic DNA-signatures", 
      "fragment affiliation", 
      "comparative tetranucleotide frequency analysis", 
      "tetranucleotide frequency analysis", 
      "fragment relatedness", 
      "pre-computed tetranucleotide usage patterns", 
      "prokaryote chromosomes", 
      "skewed oligonucleotide distributions"
    ], 
    "name": "TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences", 
    "pagination": "163-163", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017298406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-5-163"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15507136"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-5-163", 
      "https://app.dimensions.ai/details/publication/pub.1017298406"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_389.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-5-163"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-163'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-163'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-163'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-5-163'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      22 PREDICATES      146 URIs      136 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-5-163 schema:about N10a9600a4bb242b5a6982e99bfea9b82
2 N152722713de24189b96b7eb72a07526f
3 N2204329b70214c1e9cba49588c22a149
4 N230f57343ecd442caf9d8efdbc19565c
5 N3a653afdf49447fcadb8fe0309e9b99d
6 N3b66fe7f2db74a008fc564d375470d5f
7 N4e9d6e656e5e40348223ff2c93c2ca2d
8 N563926cc64514bbea94d612027d30ae2
9 N5b38896cf4f1414b8adadb283da31bc0
10 N6f887fc89d054bfbbdfb98d742c940a7
11 N87fcc2fa62c942d6898958191b437138
12 Nc26b984f0fef445cb7208f911b8fe2eb
13 Ne82c9abdb33e48fba9d316f86d5a0f40
14 Nf5b465dac9b04224881958581e871d9f
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N96057f42c3404d8f88d0c1ba7b61eb3f
18 schema:citation sg:pub.10.1038/35081051
19 sg:pub.10.1038/nature02340
20 schema:datePublished 2004-10-26
21 schema:datePublishedReg 2004-10-26
22 schema:description BACKGROUND: In the emerging field of environmental genomics, direct cloning and sequencing of genomic fragments from complex microbial communities has proven to be a valuable source of new enzymes, expanding the knowledge of basic biological processes. The central problem of this so called metagenome-approach is that the cloned fragments often lack suitable phylogenetic marker genes, rendering the identification of clones that are likely to originate from the same genome difficult or impossible. In such cases, the analysis of intrinsic DNA-signatures like tetranucleotide frequencies can provide valuable hints on fragment affiliation. With this application in mind, the TETRA web-service and the TETRA stand-alone program have been developed, both of which automate the task of comparative tetranucleotide frequency analysis. AVAILABILITY: http://www.megx.net/tetra. RESULTS: TETRA provides a statistical analysis of tetranucleotide usage patterns in genomic fragments, either via a web-service or a stand-alone program. With respect to discriminatory power, such an analysis outperforms the assignment of genomic fragments based on the (G+C)-content, which is a widely-used sequence-based measure for assessing fragment relatedness. While the web-service is restricted to the calculation of correlation coefficients between tetranucleotide usage patterns of submitted DNA sequences, the stand-alone program generates a much more detailed output, comprising all raw data and graphical plots. The stand-alone program is controlled via a graphical user interface and can batch-process a multitude of sequences. Furthermore, it comes with pre-computed tetranucleotide usage patterns for 166 prokaryote chromosomes, providing a useful reference dataset and source for data-mining. CONCLUSIONS: Up to now, the analysis of skewed oligonucleotide distributions within DNA sequences is not a commonly used tool within metagenomics. With the TETRA web-service and stand-alone program, the method is now accessible in an easy to use manner for a broad audience. This will hopefully facilitate the interrelation of genomic fragments from metagenome libraries, ultimately leading to new insights into the genetic potentials of yet uncultured microorganisms.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N058f7faf14f241419706b6090be2c046
27 N66ead124c2514ea690596c9e23cc1867
28 sg:journal.1023786
29 schema:keywords DNA sequences
30 DNA signatures
31 affiliation
32 analysis
33 applications
34 assignment
35 audience
36 basic biological processes
37 biological processes
38 broad audience
39 calculations
40 cases
41 central problem
42 chromosomes
43 clones
44 cloning
45 coefficient
46 community
47 comparative tetranucleotide frequency analysis
48 comparison
49 complex microbial communities
50 content
51 correlation coefficient
52 data
53 dataset
54 detailed output
55 direct cloning
56 discriminatory power
57 distribution
58 environmental genomics
59 enzyme
60 field
61 fragment affiliation
62 fragment relatedness
63 fragments
64 frequency
65 frequency analysis
66 genes
67 genetic potential
68 genome
69 genomic fragment
70 genomics
71 graphical plots
72 graphical user interface
73 hints
74 identification
75 identification of clones
76 insights
77 interface
78 interrelations
79 intrinsic DNA-signatures
80 knowledge
81 library
82 manner
83 marker genes
84 measures
85 metagenome library
86 metagenomics
87 method
88 microbial communities
89 microorganisms
90 mind
91 multitude
92 multitude of sequences
93 new enzyme
94 new insights
95 oligonucleotide distribution
96 output
97 patterns
98 phylogenetic marker genes
99 plots
100 potential
101 power
102 pre-computed tetranucleotide usage patterns
103 problem
104 process
105 program
106 prokaryote chromosomes
107 raw data
108 reference dataset
109 relatedness
110 respect
111 same genome
112 sequence
113 sequence-based measures
114 sequencing
115 skewed oligonucleotide distributions
116 source
117 stand-alone programs
118 statistical analysis
119 such cases
120 suitable phylogenetic marker genes
121 task
122 tetra
123 tetranucleotide frequencies
124 tetranucleotide frequency analysis
125 tetranucleotide usage patterns
126 tool
127 uncultured microorganisms
128 usage patterns
129 useful reference dataset
130 user interface
131 valuable hints
132 valuable source
133 schema:name TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences
134 schema:pagination 163-163
135 schema:productId N39c8089033684988800fb06a20aa3804
136 N3dbf47aab7ef42d0b979a567cd2e35e0
137 N92d91f81fd5e4b1f8d7ed937bb7d97e2
138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017298406
139 https://doi.org/10.1186/1471-2105-5-163
140 schema:sdDatePublished 2021-11-01T18:07
141 schema:sdLicense https://scigraph.springernature.com/explorer/license/
142 schema:sdPublisher N058cd8e6be55422b9480a71ecde47dd6
143 schema:url https://doi.org/10.1186/1471-2105-5-163
144 sgo:license sg:explorer/license/
145 sgo:sdDataset articles
146 rdf:type schema:ScholarlyArticle
147 N058cd8e6be55422b9480a71ecde47dd6 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 N058f7faf14f241419706b6090be2c046 schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 N10a9600a4bb242b5a6982e99bfea9b82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Bradyrhizobium
153 rdf:type schema:DefinedTerm
154 N152722713de24189b96b7eb72a07526f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Prochlorococcus
156 rdf:type schema:DefinedTerm
157 N2204329b70214c1e9cba49588c22a149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Sequence Analysis, DNA
159 rdf:type schema:DefinedTerm
160 N230f57343ecd442caf9d8efdbc19565c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Shigella
162 rdf:type schema:DefinedTerm
163 N2b36110fdb244690aed1a7bcbe87b599 rdf:first sg:person.01176760552.40
164 rdf:rest Naf3eaa3df5b14dc382335b840b7c2514
165 N39c8089033684988800fb06a20aa3804 schema:name dimensions_id
166 schema:value pub.1017298406
167 rdf:type schema:PropertyValue
168 N3a653afdf49447fcadb8fe0309e9b99d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Yersinia
170 rdf:type schema:DefinedTerm
171 N3b66fe7f2db74a008fc564d375470d5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Microsatellite Repeats
173 rdf:type schema:DefinedTerm
174 N3dbf47aab7ef42d0b979a567cd2e35e0 schema:name pubmed_id
175 schema:value 15507136
176 rdf:type schema:PropertyValue
177 N4e9d6e656e5e40348223ff2c93c2ca2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Base Composition
179 rdf:type schema:DefinedTerm
180 N563926cc64514bbea94d612027d30ae2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Sinorhizobium
182 rdf:type schema:DefinedTerm
183 N5b38896cf4f1414b8adadb283da31bc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Internet
185 rdf:type schema:DefinedTerm
186 N66ead124c2514ea690596c9e23cc1867 schema:volumeNumber 5
187 rdf:type schema:PublicationVolume
188 N6f887fc89d054bfbbdfb98d742c940a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name DNA, Bacterial
190 rdf:type schema:DefinedTerm
191 N87fcc2fa62c942d6898958191b437138 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Genome, Bacterial
193 rdf:type schema:DefinedTerm
194 N8b797c6298ab40d99822d17aae2d8d45 rdf:first sg:person.0773131453.06
195 rdf:rest N2b36110fdb244690aed1a7bcbe87b599
196 N92d91f81fd5e4b1f8d7ed937bb7d97e2 schema:name doi
197 schema:value 10.1186/1471-2105-5-163
198 rdf:type schema:PropertyValue
199 N96057f42c3404d8f88d0c1ba7b61eb3f rdf:first sg:person.01061602127.84
200 rdf:rest N8b797c6298ab40d99822d17aae2d8d45
201 N9cfa75cb0d0f410db187a6534f93b29a rdf:first sg:person.0764345020.82
202 rdf:rest rdf:nil
203 Naf3eaa3df5b14dc382335b840b7c2514 rdf:first sg:person.07442577202.44
204 rdf:rest N9cfa75cb0d0f410db187a6534f93b29a
205 Nc26b984f0fef445cb7208f911b8fe2eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Escherichia
207 rdf:type schema:DefinedTerm
208 Ne82c9abdb33e48fba9d316f86d5a0f40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Chromosomes, Bacterial
210 rdf:type schema:DefinedTerm
211 Nf5b465dac9b04224881958581e871d9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Software
213 rdf:type schema:DefinedTerm
214 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
215 schema:name Biological Sciences
216 rdf:type schema:DefinedTerm
217 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
218 schema:name Genetics
219 rdf:type schema:DefinedTerm
220 sg:journal.1023786 schema:issn 1471-2105
221 schema:name BMC Bioinformatics
222 schema:publisher Springer Nature
223 rdf:type schema:Periodical
224 sg:person.01061602127.84 schema:affiliation grid-institutes:grid.419529.2
225 schema:familyName Teeling
226 schema:givenName Hanno
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061602127.84
228 rdf:type schema:Person
229 sg:person.01176760552.40 schema:affiliation grid-institutes:grid.419529.2
230 schema:familyName Lombardot
231 schema:givenName Thierry
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176760552.40
233 rdf:type schema:Person
234 sg:person.07442577202.44 schema:affiliation grid-institutes:grid.419529.2
235 schema:familyName Bauer
236 schema:givenName Margarete
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07442577202.44
238 rdf:type schema:Person
239 sg:person.0764345020.82 schema:affiliation grid-institutes:grid.15078.3b
240 schema:familyName Glöckner
241 schema:givenName Frank Oliver
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764345020.82
243 rdf:type schema:Person
244 sg:person.0773131453.06 schema:affiliation grid-institutes:grid.419529.2
245 schema:familyName Waldmann
246 schema:givenName Jost
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773131453.06
248 rdf:type schema:Person
249 sg:pub.10.1038/35081051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042650430
250 https://doi.org/10.1038/35081051
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
253 https://doi.org/10.1038/nature02340
254 rdf:type schema:CreativeWork
255 grid-institutes:grid.15078.3b schema:alternateName International University Bremen, D-28759 Bremen, Germany
256 schema:name International University Bremen, D-28759 Bremen, Germany
257 Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
258 rdf:type schema:Organization
259 grid-institutes:grid.419529.2 schema:alternateName Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
260 schema:name Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...