Fast and sensitive multiple alignment of large genomic sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-12-23

AUTHORS

Michael Brudno, Michael Chapman, Berthold Göttgens, Serafim Batzoglou, Burkhard Morgenstern

ABSTRACT

BACKGROUND: Genomic sequence alignment is a powerful method for genome analysis and annotation, as alignments are routinely used to identify functional sites such as genes or regulatory elements. With a growing number of partially or completely sequenced genomes, multiple alignment is playing an increasingly important role in these studies. In recent years, various tools for pair-wise and multiple genomic alignment have been proposed. Some of them are extremely fast, but often efficiency is achieved at the expense of sensitivity. One way of combining speed and sensitivity is to use an anchored-alignment approach. In a first step, a fast search program identifies a chain of strong local sequence similarities. In a second step, regions between these anchor points are aligned using a slower but more accurate method. RESULTS: Herein, we present CHAOS, a novel algorithm for rapid identification of chains of local pair-wise sequence similarities. Local alignments calculated by CHAOS are used as anchor points to improve the running time of DIALIGN, a slow but sensitive multiple-alignment tool. We show that this way, the running time of DIALIGN can be reduced by more than 95% for BAC-sized and longer sequences, without affecting the quality of the resulting alignments. We apply our approach to a set of five genomic sequences around the stem-cell-leukemia (SCL) gene and demonstrate that exons and small regulatory elements can be identified by our multiple-alignment procedure. CONCLUSION: We conclude that the novel CHAOS local alignment tool is an effective way to significantly speed up global alignment tools such as DIALIGN without reducing the alignment quality. We likewise demonstrate that the DIALIGN/CHAOS combination is able to accurately align short regulatory sequences in distant orthologues. More... »

PAGES

66-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-4-66

DOI

http://dx.doi.org/10.1186/1471-2105-4-66

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008117919

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14693042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chickens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Sequences, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software Validation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tetraodontiformes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zebrafish", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Stanford University, Stanford, CA 94305, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Computer Science, Stanford University, Stanford, CA 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brudno", 
        "givenName": "Michael", 
        "id": "sg:person.01253563237.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chapman", 
        "givenName": "Michael", 
        "id": "sg:person.01360124561.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360124561.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6ttgens", 
        "givenName": "Berthold", 
        "id": "sg:person.07575367437.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575367437.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Stanford University, Stanford, CA 94305, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Computer Science, Stanford University, Stanford, CA 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batzoglou", 
        "givenName": "Serafim", 
        "id": "sg:person.0606462727.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606462727.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077 G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "International Graduate School in Bioinformatics and Genome Research, Universit\u00e4t Bielefeld, Postfach 100131, 33501 Bielefeld, Germany", 
            "University of G\u00f6ttingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077 G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morgenstern", 
        "givenName": "Burkhard", 
        "id": "sg:person.0645534251.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645534251.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/72635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012156951", 
          "https://doi.org/10.1038/72635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45727-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029983127", 
          "https://doi.org/10.1007/3-540-45727-5_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12-23", 
    "datePublishedReg": "2003-12-23", 
    "description": "BACKGROUND: Genomic sequence alignment is a powerful method for genome analysis and annotation, as alignments are routinely used to identify functional sites such as genes or regulatory elements. With a growing number of partially or completely sequenced genomes, multiple alignment is playing an increasingly important role in these studies. In recent years, various tools for pair-wise and multiple genomic alignment have been proposed. Some of them are extremely fast, but often efficiency is achieved at the expense of sensitivity. One way of combining speed and sensitivity is to use an anchored-alignment approach. In a first step, a fast search program identifies a chain of strong local sequence similarities. In a second step, regions between these anchor points are aligned using a slower but more accurate method.\nRESULTS: Herein, we present CHAOS, a novel algorithm for rapid identification of chains of local pair-wise sequence similarities. Local alignments calculated by CHAOS are used as anchor points to improve the running time of DIALIGN, a slow but sensitive multiple-alignment tool. We show that this way, the running time of DIALIGN can be reduced by more than 95% for BAC-sized and longer sequences, without affecting the quality of the resulting alignments. We apply our approach to a set of five genomic sequences around the stem-cell-leukemia (SCL) gene and demonstrate that exons and small regulatory elements can be identified by our multiple-alignment procedure.\nCONCLUSION: We conclude that the novel CHAOS local alignment tool is an effective way to significantly speed up global alignment tools such as DIALIGN without reducing the alignment quality. We likewise demonstrate that the DIALIGN/CHAOS combination is able to accurately align short regulatory sequences in distant orthologues.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-4-66", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "sequence similarity", 
      "genomic sequences", 
      "regulatory elements", 
      "pair-wise sequence similarity", 
      "short regulatory sequences", 
      "multiple alignment", 
      "small regulatory elements", 
      "large genomic sequences", 
      "genomic sequence alignment", 
      "local sequence similarity", 
      "distant orthologues", 
      "genomic alignments", 
      "genome analysis", 
      "regulatory sequences", 
      "local alignment tool", 
      "alignment tools", 
      "sequence alignment", 
      "global alignment tool", 
      "functional sites", 
      "leukemia gene", 
      "genes", 
      "sequence", 
      "rapid identification", 
      "orthologues", 
      "genome", 
      "important role", 
      "exons", 
      "local alignment", 
      "similarity", 
      "long sequences", 
      "BAC", 
      "DIALIGN", 
      "anchor points", 
      "powerful method", 
      "annotation", 
      "alignment", 
      "first step", 
      "identification", 
      "chain", 
      "sites", 
      "alignment quality", 
      "search program", 
      "role", 
      "step", 
      "elements", 
      "region", 
      "tool", 
      "recent years", 
      "Herein", 
      "sensitivity", 
      "analysis", 
      "number", 
      "second step", 
      "expense of sensitivity", 
      "combination", 
      "study", 
      "approach", 
      "time", 
      "set", 
      "expense", 
      "way", 
      "accurate method", 
      "efficiency", 
      "quality", 
      "years", 
      "point", 
      "program", 
      "method", 
      "effective way", 
      "CHAOS", 
      "novel algorithm", 
      "procedure", 
      "speed", 
      "algorithm", 
      "multiple genomic alignment", 
      "anchored-alignment approach", 
      "fast search program", 
      "strong local sequence similarities", 
      "local pair-wise sequence similarities", 
      "time of DIALIGN", 
      "sensitive multiple-alignment tool", 
      "multiple-alignment tool", 
      "multiple-alignment procedure", 
      "novel CHAOS local alignment tool", 
      "CHAOS local alignment tool", 
      "DIALIGN/CHAOS combination", 
      "CHAOS combination", 
      "sensitive multiple alignment"
    ], 
    "name": "Fast and sensitive multiple alignment of large genomic sequences", 
    "pagination": "66-66", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008117919"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-4-66"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14693042"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-4-66", 
      "https://app.dimensions.ai/details/publication/pub.1008117919"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_373.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-4-66"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-4-66'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-4-66'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-4-66'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-4-66'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      22 PREDICATES      135 URIs      125 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-4-66 schema:about N15e3beae9af34ccf846a06fabe710fdd
2 N1e80015f412a404eae12a21180bea49f
3 N2031e10703874162a3050668b25c98eb
4 N3399569db2f049b7ac28f15d99ffb41e
5 N3425114f6b6d40d392444e2327a84f51
6 N342abdc4969647e2a615e3c398f516a0
7 N529aa1ade74f46e4a78183dfa4d74c83
8 N6958246d6a5848a7ae9dcea437c7a2b9
9 N6b438be800f2476ca76c9b9445a04327
10 N6f91f73db0a54854aede94fddd7acb7e
11 N746a3d7d8de0495d98724b24f32b279f
12 N7b69aa53087c4e7bb7fc3654c4b2e826
13 N980dcf4a08ef4a6f9adc85eb0c1ddc1e
14 N9883963a616c4f2aa4e6f882fe7671c7
15 Na333edb0588941e89e8b95f5fa3ee5e1
16 Nb760e6cfb90a4bb48e5ae0f781f05f3d
17 Nb9d77aea1e5844aa9a30eab5781f25ba
18 Nd03cb67af3604bc2a586ff5feb8bb8e5
19 Nf7f343f2b4164311b25088d478c9f993
20 anzsrc-for:06
21 anzsrc-for:0604
22 schema:author Nc0d4634113bb4fb4991089a4d194ff4c
23 schema:citation sg:pub.10.1007/3-540-45727-5_1
24 sg:pub.10.1038/72635
25 schema:datePublished 2003-12-23
26 schema:datePublishedReg 2003-12-23
27 schema:description BACKGROUND: Genomic sequence alignment is a powerful method for genome analysis and annotation, as alignments are routinely used to identify functional sites such as genes or regulatory elements. With a growing number of partially or completely sequenced genomes, multiple alignment is playing an increasingly important role in these studies. In recent years, various tools for pair-wise and multiple genomic alignment have been proposed. Some of them are extremely fast, but often efficiency is achieved at the expense of sensitivity. One way of combining speed and sensitivity is to use an anchored-alignment approach. In a first step, a fast search program identifies a chain of strong local sequence similarities. In a second step, regions between these anchor points are aligned using a slower but more accurate method. RESULTS: Herein, we present CHAOS, a novel algorithm for rapid identification of chains of local pair-wise sequence similarities. Local alignments calculated by CHAOS are used as anchor points to improve the running time of DIALIGN, a slow but sensitive multiple-alignment tool. We show that this way, the running time of DIALIGN can be reduced by more than 95% for BAC-sized and longer sequences, without affecting the quality of the resulting alignments. We apply our approach to a set of five genomic sequences around the stem-cell-leukemia (SCL) gene and demonstrate that exons and small regulatory elements can be identified by our multiple-alignment procedure. CONCLUSION: We conclude that the novel CHAOS local alignment tool is an effective way to significantly speed up global alignment tools such as DIALIGN without reducing the alignment quality. We likewise demonstrate that the DIALIGN/CHAOS combination is able to accurately align short regulatory sequences in distant orthologues.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nbc47806ac92e416a924c4d2fdf613202
32 Nd8c2c1e6b52a4fda8919cb995b6dedbc
33 sg:journal.1023786
34 schema:keywords BAC
35 CHAOS
36 CHAOS combination
37 CHAOS local alignment tool
38 DIALIGN
39 DIALIGN/CHAOS combination
40 Herein
41 accurate method
42 algorithm
43 alignment
44 alignment quality
45 alignment tools
46 analysis
47 anchor points
48 anchored-alignment approach
49 annotation
50 approach
51 chain
52 combination
53 distant orthologues
54 effective way
55 efficiency
56 elements
57 exons
58 expense
59 expense of sensitivity
60 fast search program
61 first step
62 functional sites
63 genes
64 genome
65 genome analysis
66 genomic alignments
67 genomic sequence alignment
68 genomic sequences
69 global alignment tool
70 identification
71 important role
72 large genomic sequences
73 leukemia gene
74 local alignment
75 local alignment tool
76 local pair-wise sequence similarities
77 local sequence similarity
78 long sequences
79 method
80 multiple alignment
81 multiple genomic alignment
82 multiple-alignment procedure
83 multiple-alignment tool
84 novel CHAOS local alignment tool
85 novel algorithm
86 number
87 orthologues
88 pair-wise sequence similarity
89 point
90 powerful method
91 procedure
92 program
93 quality
94 rapid identification
95 recent years
96 region
97 regulatory elements
98 regulatory sequences
99 role
100 search program
101 second step
102 sensitive multiple alignment
103 sensitive multiple-alignment tool
104 sensitivity
105 sequence
106 sequence alignment
107 sequence similarity
108 set
109 short regulatory sequences
110 similarity
111 sites
112 small regulatory elements
113 speed
114 step
115 strong local sequence similarities
116 study
117 time
118 time of DIALIGN
119 tool
120 way
121 years
122 schema:name Fast and sensitive multiple alignment of large genomic sequences
123 schema:pagination 66-66
124 schema:productId N285d2f927dbe4520ada569317b292e15
125 Naf76354709884a8f8597302352057e62
126 Nb43b00dd5c024194b115ca227c4021f2
127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008117919
128 https://doi.org/10.1186/1471-2105-4-66
129 schema:sdDatePublished 2021-12-01T19:15
130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
131 schema:sdPublisher Na0a293d0c1044fc69c139fd829ac5b7f
132 schema:url https://doi.org/10.1186/1471-2105-4-66
133 sgo:license sg:explorer/license/
134 sgo:sdDataset articles
135 rdf:type schema:ScholarlyArticle
136 N11fd7c1ddda545e39ed8ac637774276e rdf:first sg:person.0606462727.66
137 rdf:rest N1b5c35b240a6488997f9e976ab6ef8b1
138 N15e3beae9af34ccf846a06fabe710fdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Leukemia
140 rdf:type schema:DefinedTerm
141 N1b5c35b240a6488997f9e976ab6ef8b1 rdf:first sg:person.0645534251.08
142 rdf:rest rdf:nil
143 N1e80015f412a404eae12a21180bea49f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Genes, Neoplasm
145 rdf:type schema:DefinedTerm
146 N2031e10703874162a3050668b25c98eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Algorithms
148 rdf:type schema:DefinedTerm
149 N27317ebcda914e73aa46c0eaa18e9d09 rdf:first sg:person.01360124561.62
150 rdf:rest N7a3c5ddfd0c14fd68093478c2d91b7f1
151 N285d2f927dbe4520ada569317b292e15 schema:name dimensions_id
152 schema:value pub.1008117919
153 rdf:type schema:PropertyValue
154 N3399569db2f049b7ac28f15d99ffb41e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Tetraodontiformes
156 rdf:type schema:DefinedTerm
157 N3425114f6b6d40d392444e2327a84f51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Chickens
159 rdf:type schema:DefinedTerm
160 N342abdc4969647e2a615e3c398f516a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Animals
162 rdf:type schema:DefinedTerm
163 N529aa1ade74f46e4a78183dfa4d74c83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Software Validation
165 rdf:type schema:DefinedTerm
166 N6958246d6a5848a7ae9dcea437c7a2b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Genome
168 rdf:type schema:DefinedTerm
169 N6b438be800f2476ca76c9b9445a04327 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Computational Biology
171 rdf:type schema:DefinedTerm
172 N6f91f73db0a54854aede94fddd7acb7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Sensitivity and Specificity
174 rdf:type schema:DefinedTerm
175 N746a3d7d8de0495d98724b24f32b279f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name DNA, Neoplasm
177 rdf:type schema:DefinedTerm
178 N7a3c5ddfd0c14fd68093478c2d91b7f1 rdf:first sg:person.07575367437.14
179 rdf:rest N11fd7c1ddda545e39ed8ac637774276e
180 N7b69aa53087c4e7bb7fc3654c4b2e826 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Regulatory Sequences, Nucleic Acid
182 rdf:type schema:DefinedTerm
183 N980dcf4a08ef4a6f9adc85eb0c1ddc1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Mice
185 rdf:type schema:DefinedTerm
186 N9883963a616c4f2aa4e6f882fe7671c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Rats
188 rdf:type schema:DefinedTerm
189 Na0a293d0c1044fc69c139fd829ac5b7f schema:name Springer Nature - SN SciGraph project
190 rdf:type schema:Organization
191 Na333edb0588941e89e8b95f5fa3ee5e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Sequence Alignment
193 rdf:type schema:DefinedTerm
194 Naf76354709884a8f8597302352057e62 schema:name doi
195 schema:value 10.1186/1471-2105-4-66
196 rdf:type schema:PropertyValue
197 Nb43b00dd5c024194b115ca227c4021f2 schema:name pubmed_id
198 schema:value 14693042
199 rdf:type schema:PropertyValue
200 Nb760e6cfb90a4bb48e5ae0f781f05f3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Stem Cells
202 rdf:type schema:DefinedTerm
203 Nb9d77aea1e5844aa9a30eab5781f25ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Zebrafish
205 rdf:type schema:DefinedTerm
206 Nbc47806ac92e416a924c4d2fdf613202 schema:issueNumber 1
207 rdf:type schema:PublicationIssue
208 Nc0d4634113bb4fb4991089a4d194ff4c rdf:first sg:person.01253563237.25
209 rdf:rest N27317ebcda914e73aa46c0eaa18e9d09
210 Nd03cb67af3604bc2a586ff5feb8bb8e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Humans
212 rdf:type schema:DefinedTerm
213 Nd8c2c1e6b52a4fda8919cb995b6dedbc schema:volumeNumber 4
214 rdf:type schema:PublicationVolume
215 Nf7f343f2b4164311b25088d478c9f993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Software
217 rdf:type schema:DefinedTerm
218 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
219 schema:name Biological Sciences
220 rdf:type schema:DefinedTerm
221 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
222 schema:name Genetics
223 rdf:type schema:DefinedTerm
224 sg:journal.1023786 schema:issn 1471-2105
225 schema:name BMC Bioinformatics
226 schema:publisher Springer Nature
227 rdf:type schema:Periodical
228 sg:person.01253563237.25 schema:affiliation grid-institutes:grid.168010.e
229 schema:familyName Brudno
230 schema:givenName Michael
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25
232 rdf:type schema:Person
233 sg:person.01360124561.62 schema:affiliation grid-institutes:grid.5335.0
234 schema:familyName Chapman
235 schema:givenName Michael
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360124561.62
237 rdf:type schema:Person
238 sg:person.0606462727.66 schema:affiliation grid-institutes:grid.168010.e
239 schema:familyName Batzoglou
240 schema:givenName Serafim
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606462727.66
242 rdf:type schema:Person
243 sg:person.0645534251.08 schema:affiliation grid-institutes:grid.7450.6
244 schema:familyName Morgenstern
245 schema:givenName Burkhard
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645534251.08
247 rdf:type schema:Person
248 sg:person.07575367437.14 schema:affiliation grid-institutes:grid.5335.0
249 schema:familyName Göttgens
250 schema:givenName Berthold
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575367437.14
252 rdf:type schema:Person
253 sg:pub.10.1007/3-540-45727-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029983127
254 https://doi.org/10.1007/3-540-45727-5_1
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/72635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012156951
257 https://doi.org/10.1038/72635
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.168010.e schema:alternateName Department of Computer Science, Stanford University, Stanford, CA 94305, USA
260 schema:name Department of Computer Science, Stanford University, Stanford, CA 94305, USA
261 rdf:type schema:Organization
262 grid-institutes:grid.5335.0 schema:alternateName Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom
263 schema:name Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom
264 rdf:type schema:Organization
265 grid-institutes:grid.7450.6 schema:alternateName University of Göttingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
266 schema:name International Graduate School in Bioinformatics and Genome Research, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
267 University of Göttingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...