Sources of variability and effect of experimental approach on expression profiling data interpretation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-12

AUTHORS

Marina Bakay, Yi-Wen Chen, Rehannah Borup, Po Zhao, Kanneboyina Nagaraju, Eric P Hoffman

ABSTRACT

BACKGROUND: We provide a systematic study of the sources of variability in expression profiling data using 56 RNAs isolated from human muscle biopsies (34 Affymetrix MuscleChip arrays), and 36 murine cell culture and tissue RNAs (42 Affymetrix U74Av2 arrays). RESULTS: We studied muscle biopsies from 28 human subjects as well as murine myogenic cell cultures, muscle, and spleens. Human MuscleChip arrays (4,601 probe sets) and murine U74Av2 Affymetrix microarrays were used for expression profiling. RNAs were profiled both singly, and as mixed groups. Variables studied included tissue heterogeneity, cRNA probe production, patient diagnosis, and GeneChip hybridizations. We found that the greatest source of variability was often different regions of the same patient muscle biopsy, reflecting variation in cell type content even in a relatively homogeneous tissue such as muscle. Inter-patient variation was also very high (SNP noise). Experimental variation (RNA, cDNA, cRNA, or GeneChip) was minor. Pre-profile mixing of patient cRNA samples effectively normalized both intra- and inter-patient sources of variation, while retaining a high degree of specificity of the individual profiles (86% of statistically significant differences detected by absolute analysis; and 85% by a 4-pairwise comparison survival method). CONCLUSIONS: Using unsupervised cluster analysis and correlation coefficients of 92 RNA samples on 76 oligonucleotide microarrays, we found that experimental error was not a significant source of unwanted variability in expression profiling experiments. Major sources of variability were from use of small tissue biopsies, particularly in humans where there is substantial inter-patient variability (SNP noise). More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-3-4

DOI

http://dx.doi.org/10.1186/1471-2105-3-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023798762

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11936955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dystrophin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Mutant Strains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscular Dystrophy, Duchenne", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spleen", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakay", 
        "givenName": "Marina", 
        "id": "sg:person.01337403251.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337403251.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yi-Wen", 
        "id": "sg:person.01320155655.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320155655.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borup", 
        "givenName": "Rehannah", 
        "id": "sg:person.01276620460.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276620460.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Po", 
        "id": "sg:person.0747073265.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747073265.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Division of Rheumatology, Johns Hopkins School of Medicine, Ross 1042, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagaraju", 
        "givenName": "Kanneboyina", 
        "id": "sg:person.011342032457.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342032457.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffman", 
        "givenName": "Eric P", 
        "id": "sg:person.010565461017.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010565461017.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.93.24.13555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.16.9212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002392246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.21.11371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003044854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.291.5505.881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005056175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.210395297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006850990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.26.15623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007753211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837556", 
          "https://doi.org/10.1038/4434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837556", 
          "https://doi.org/10.1038/4434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.9.12.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014767256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.151.6.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026826000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6750-1-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028779203", 
          "https://doi.org/10.1186/1472-6750-1-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.12.6745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033514193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5380.1194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033841051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.191367098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034333528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.7.3364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035766690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038604506", 
          "https://doi.org/10.1038/4439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038604506", 
          "https://doi.org/10.1038/4439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039076321", 
          "https://doi.org/10.1038/35020115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039076321", 
          "https://doi.org/10.1038/35020115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040686717", 
          "https://doi.org/10.1038/4447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040686717", 
          "https://doi.org/10.1038/4447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042889158", 
          "https://doi.org/10.1186/bcr317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042889158", 
          "https://doi.org/10.1186/bcr317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.11.12.4309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046744619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/8.10.1821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047227467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.11.12.4241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.15.e72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052589659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.4.1778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052945378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5432.1390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566415"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-12", 
    "datePublishedReg": "2002-12-01", 
    "description": "BACKGROUND: We provide a systematic study of the sources of variability in expression profiling data using 56 RNAs isolated from human muscle biopsies (34 Affymetrix MuscleChip arrays), and 36 murine cell culture and tissue RNAs (42 Affymetrix U74Av2 arrays).\nRESULTS: We studied muscle biopsies from 28 human subjects as well as murine myogenic cell cultures, muscle, and spleens. Human MuscleChip arrays (4,601 probe sets) and murine U74Av2 Affymetrix microarrays were used for expression profiling. RNAs were profiled both singly, and as mixed groups. Variables studied included tissue heterogeneity, cRNA probe production, patient diagnosis, and GeneChip hybridizations. We found that the greatest source of variability was often different regions of the same patient muscle biopsy, reflecting variation in cell type content even in a relatively homogeneous tissue such as muscle. Inter-patient variation was also very high (SNP noise). Experimental variation (RNA, cDNA, cRNA, or GeneChip) was minor. Pre-profile mixing of patient cRNA samples effectively normalized both intra- and inter-patient sources of variation, while retaining a high degree of specificity of the individual profiles (86% of statistically significant differences detected by absolute analysis; and 85% by a 4-pairwise comparison survival method).\nCONCLUSIONS: Using unsupervised cluster analysis and correlation coefficients of 92 RNA samples on 76 oligonucleotide microarrays, we found that experimental error was not a significant source of unwanted variability in expression profiling experiments. Major sources of variability were from use of small tissue biopsies, particularly in humans where there is substantial inter-patient variability (SNP noise).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-3-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691649", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2557188", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Sources of variability and effect of experimental approach on expression profiling data interpretation", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "716198e1ae65096842f72fec1967bdfdb982f65dbbe5eaa81b0c41e6dd3bc1d6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11936955"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-3-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023798762"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-3-4", 
      "https://app.dimensions.ai/details/publication/pub.1023798762"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-3-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-3-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-3-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-3-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-3-4'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      78 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-3-4 schema:about N1b10df2003424fd3b5b7a61dcf8d21ac
2 N1b8a2de100544406bdb787a5721be7ab
3 N3cd1a39fa5d349a092696c6c333e5422
4 N47d015e4841f4751b34d63ceb8c41f10
5 N52996cbb13b545a09417d6ee5c22e280
6 N62a4b45ddb124525aa536722184e0b3d
7 N6b23bc18d4104195835cf22ac0838e28
8 N6b6547f9318748e7b9ad57904ba0a23e
9 N84071590cd9a47a39e270c79e72dee8e
10 N94d5557268db4e32a4995944b90a9569
11 N9ed773522aba4cadabf9071d220ec68a
12 Na162f117b9df4475a9c994bc69f2b98c
13 Na912a37ee6e64249903d6132cbedb529
14 Naae1fd541e0e4e85b425867d0fae8cf1
15 Nbd2c39a72f4e4ba5a2fc4975b6b79508
16 Nc6855856cc274e9c95af387f549467e2
17 Ncc4d44a53fbf4516a62ea72101115ce4
18 Ne119d8582aed4ab48c017d568a12cbba
19 Ne67c0ade8dbe4ef8a55592e64f36d0ee
20 Nf11b8cb283df4fe19e3d6d7bfedac7ec
21 Nf72f634d218e4d4b8ab847c19e27b915
22 anzsrc-for:06
23 anzsrc-for:0604
24 schema:author Nec78a7d9d9d6499e8796d26e41be0dac
25 schema:citation sg:pub.10.1038/35020115
26 sg:pub.10.1038/4434
27 sg:pub.10.1038/4439
28 sg:pub.10.1038/4447
29 sg:pub.10.1038/4462
30 sg:pub.10.1038/nbt1296-1675
31 sg:pub.10.1186/1472-6750-1-8
32 sg:pub.10.1186/bcr317
33 https://doi.org/10.1073/pnas.191367098
34 https://doi.org/10.1073/pnas.210395297
35 https://doi.org/10.1073/pnas.93.24.13555
36 https://doi.org/10.1073/pnas.95.25.14863
37 https://doi.org/10.1073/pnas.95.26.15623
38 https://doi.org/10.1073/pnas.96.12.6745
39 https://doi.org/10.1073/pnas.96.16.9212
40 https://doi.org/10.1073/pnas.97.21.11371
41 https://doi.org/10.1073/pnas.97.4.1778
42 https://doi.org/10.1073/pnas.97.7.3364
43 https://doi.org/10.1083/jcb.151.6.1321
44 https://doi.org/10.1091/mbc.11.12.4241
45 https://doi.org/10.1091/mbc.11.12.4309
46 https://doi.org/10.1091/mbc.9.12.3273
47 https://doi.org/10.1093/hmg/8.10.1821
48 https://doi.org/10.1093/nar/29.15.e72
49 https://doi.org/10.1126/science.281.5380.1194
50 https://doi.org/10.1126/science.285.5432.1390
51 https://doi.org/10.1126/science.286.5439.531
52 https://doi.org/10.1126/science.291.5505.881
53 schema:datePublished 2002-12
54 schema:datePublishedReg 2002-12-01
55 schema:description BACKGROUND: We provide a systematic study of the sources of variability in expression profiling data using 56 RNAs isolated from human muscle biopsies (34 Affymetrix MuscleChip arrays), and 36 murine cell culture and tissue RNAs (42 Affymetrix U74Av2 arrays). RESULTS: We studied muscle biopsies from 28 human subjects as well as murine myogenic cell cultures, muscle, and spleens. Human MuscleChip arrays (4,601 probe sets) and murine U74Av2 Affymetrix microarrays were used for expression profiling. RNAs were profiled both singly, and as mixed groups. Variables studied included tissue heterogeneity, cRNA probe production, patient diagnosis, and GeneChip hybridizations. We found that the greatest source of variability was often different regions of the same patient muscle biopsy, reflecting variation in cell type content even in a relatively homogeneous tissue such as muscle. Inter-patient variation was also very high (SNP noise). Experimental variation (RNA, cDNA, cRNA, or GeneChip) was minor. Pre-profile mixing of patient cRNA samples effectively normalized both intra- and inter-patient sources of variation, while retaining a high degree of specificity of the individual profiles (86% of statistically significant differences detected by absolute analysis; and 85% by a 4-pairwise comparison survival method). CONCLUSIONS: Using unsupervised cluster analysis and correlation coefficients of 92 RNA samples on 76 oligonucleotide microarrays, we found that experimental error was not a significant source of unwanted variability in expression profiling experiments. Major sources of variability were from use of small tissue biopsies, particularly in humans where there is substantial inter-patient variability (SNP noise).
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N5fd451a1dba34c138ec71391cb0cfd47
60 N8cdc2ee2df0442919d6534144cdae84a
61 sg:journal.1023786
62 schema:name Sources of variability and effect of experimental approach on expression profiling data interpretation
63 schema:pagination 4
64 schema:productId N671ab361094e4e8a9be1d3e13932e5a3
65 N7363630a1c7047ec93b35377b53d4b16
66 Nb27091a6e09448ae9a9c3049e81040bb
67 Nc4e2e62f581b47a1ab0d2cefe8b21d85
68 Ndf9bc67124f8497983b43c38e481236d
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023798762
70 https://doi.org/10.1186/1471-2105-3-4
71 schema:sdDatePublished 2019-04-11T09:39
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N9daf164308d940cda8f00ab3338f0e6c
74 schema:url https://link.springer.com/10.1186%2F1471-2105-3-4
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N1b10df2003424fd3b5b7a61dcf8d21ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Oligonucleotide Array Sequence Analysis
80 rdf:type schema:DefinedTerm
81 N1b8977818d294b3fb43101e3ae9bd8f0 rdf:first sg:person.01320155655.81
82 rdf:rest N639cddcb4f9f4c78aa8d88d500f49236
83 N1b8a2de100544406bdb787a5721be7ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Muscular Dystrophy, Duchenne
85 rdf:type schema:DefinedTerm
86 N20c8f08ba34f4e1d951b3544c6a2a0e3 rdf:first sg:person.011342032457.01
87 rdf:rest Ne509a4a3fb164b53adfd8159e7c49ce2
88 N260c50fc512d42bea7f3a32172dee7dc rdf:first sg:person.0747073265.17
89 rdf:rest N20c8f08ba34f4e1d951b3544c6a2a0e3
90 N3cd1a39fa5d349a092696c6c333e5422 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Mice
92 rdf:type schema:DefinedTerm
93 N47d015e4841f4751b34d63ceb8c41f10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genetic Variation
95 rdf:type schema:DefinedTerm
96 N52996cbb13b545a09417d6ee5c22e280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Child, Preschool
98 rdf:type schema:DefinedTerm
99 N5fd451a1dba34c138ec71391cb0cfd47 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N62a4b45ddb124525aa536722184e0b3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name RNA
103 rdf:type schema:DefinedTerm
104 N639cddcb4f9f4c78aa8d88d500f49236 rdf:first sg:person.01276620460.18
105 rdf:rest N260c50fc512d42bea7f3a32172dee7dc
106 N671ab361094e4e8a9be1d3e13932e5a3 schema:name pubmed_id
107 schema:value 11936955
108 rdf:type schema:PropertyValue
109 N6b23bc18d4104195835cf22ac0838e28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Female
111 rdf:type schema:DefinedTerm
112 N6b6547f9318748e7b9ad57904ba0a23e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Humans
114 rdf:type schema:DefinedTerm
115 N7363630a1c7047ec93b35377b53d4b16 schema:name nlm_unique_id
116 schema:value 100965194
117 rdf:type schema:PropertyValue
118 N84071590cd9a47a39e270c79e72dee8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Mice, Mutant Strains
120 rdf:type schema:DefinedTerm
121 N8cdc2ee2df0442919d6534144cdae84a schema:volumeNumber 3
122 rdf:type schema:PublicationVolume
123 N94d5557268db4e32a4995944b90a9569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Computational Biology
125 rdf:type schema:DefinedTerm
126 N9daf164308d940cda8f00ab3338f0e6c schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N9ed773522aba4cadabf9071d220ec68a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Animals
130 rdf:type schema:DefinedTerm
131 Na162f117b9df4475a9c994bc69f2b98c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sensitivity and Specificity
133 rdf:type schema:DefinedTerm
134 Na912a37ee6e64249903d6132cbedb529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Polymorphism, Single Nucleotide
136 rdf:type schema:DefinedTerm
137 Naae1fd541e0e4e85b425867d0fae8cf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Cell Line
139 rdf:type schema:DefinedTerm
140 Nb27091a6e09448ae9a9c3049e81040bb schema:name readcube_id
141 schema:value 716198e1ae65096842f72fec1967bdfdb982f65dbbe5eaa81b0c41e6dd3bc1d6
142 rdf:type schema:PropertyValue
143 Nbd2c39a72f4e4ba5a2fc4975b6b79508 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Muscles
145 rdf:type schema:DefinedTerm
146 Nc4e2e62f581b47a1ab0d2cefe8b21d85 schema:name dimensions_id
147 schema:value pub.1023798762
148 rdf:type schema:PropertyValue
149 Nc6855856cc274e9c95af387f549467e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Child
151 rdf:type schema:DefinedTerm
152 Ncc4d44a53fbf4516a62ea72101115ce4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Data Interpretation, Statistical
154 rdf:type schema:DefinedTerm
155 Ndf9bc67124f8497983b43c38e481236d schema:name doi
156 schema:value 10.1186/1471-2105-3-4
157 rdf:type schema:PropertyValue
158 Ne119d8582aed4ab48c017d568a12cbba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Dystrophin
160 rdf:type schema:DefinedTerm
161 Ne509a4a3fb164b53adfd8159e7c49ce2 rdf:first sg:person.010565461017.59
162 rdf:rest rdf:nil
163 Ne67c0ade8dbe4ef8a55592e64f36d0ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Spleen
165 rdf:type schema:DefinedTerm
166 Nec78a7d9d9d6499e8796d26e41be0dac rdf:first sg:person.01337403251.16
167 rdf:rest N1b8977818d294b3fb43101e3ae9bd8f0
168 Nf11b8cb283df4fe19e3d6d7bfedac7ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Male
170 rdf:type schema:DefinedTerm
171 Nf72f634d218e4d4b8ab847c19e27b915 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Gene Expression Profiling
173 rdf:type schema:DefinedTerm
174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
175 schema:name Biological Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
178 schema:name Genetics
179 rdf:type schema:DefinedTerm
180 sg:grant.2557188 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-3-4
181 rdf:type schema:MonetaryGrant
182 sg:grant.2691649 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-3-4
183 rdf:type schema:MonetaryGrant
184 sg:journal.1023786 schema:issn 1471-2105
185 schema:name BMC Bioinformatics
186 rdf:type schema:Periodical
187 sg:person.010565461017.59 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
188 schema:familyName Hoffman
189 schema:givenName Eric P
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010565461017.59
191 rdf:type schema:Person
192 sg:person.011342032457.01 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
193 schema:familyName Nagaraju
194 schema:givenName Kanneboyina
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342032457.01
196 rdf:type schema:Person
197 sg:person.01276620460.18 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
198 schema:familyName Borup
199 schema:givenName Rehannah
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276620460.18
201 rdf:type schema:Person
202 sg:person.01320155655.81 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
203 schema:familyName Chen
204 schema:givenName Yi-Wen
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320155655.81
206 rdf:type schema:Person
207 sg:person.01337403251.16 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
208 schema:familyName Bakay
209 schema:givenName Marina
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337403251.16
211 rdf:type schema:Person
212 sg:person.0747073265.17 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
213 schema:familyName Zhao
214 schema:givenName Po
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747073265.17
216 rdf:type schema:Person
217 sg:pub.10.1038/35020115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039076321
218 https://doi.org/10.1038/35020115
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/4434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837556
221 https://doi.org/10.1038/4434
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/4439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038604506
224 https://doi.org/10.1038/4439
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/4447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040686717
227 https://doi.org/10.1038/4447
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
230 https://doi.org/10.1038/4462
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
233 https://doi.org/10.1038/nbt1296-1675
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1472-6750-1-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028779203
236 https://doi.org/10.1186/1472-6750-1-8
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/bcr317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042889158
239 https://doi.org/10.1186/bcr317
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1073/pnas.191367098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034333528
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1073/pnas.210395297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006850990
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1073/pnas.93.24.13555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001486395
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1073/pnas.95.26.15623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007753211
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1073/pnas.96.12.6745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033514193
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1073/pnas.96.16.9212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002392246
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1073/pnas.97.21.11371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003044854
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1073/pnas.97.4.1778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052945378
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1073/pnas.97.7.3364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035766690
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1083/jcb.151.6.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026826000
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1091/mbc.11.12.4241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274369
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1091/mbc.11.12.4309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046744619
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/hmg/8.10.1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047227467
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/nar/29.15.e72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052589659
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1126/science.281.5380.1194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033841051
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1126/science.285.5432.1390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566415
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1126/science.291.5505.881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005056175
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.239560.b schema:alternateName Children’s National Health System
282 schema:name Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
285 schema:name Division of Rheumatology, Johns Hopkins School of Medicine, Ross 1042, Baltimore, MD, USA
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...