Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-04-17

AUTHORS

Marta Avalos, Hélène Pouyes, Yves Grandvalet, Ludivine Orriols, Emmanuel Lagarde

ABSTRACT

This paper considers the problem of estimation and variable selection for large high-dimensional data (high number of predictors p and large sample size N, without excluding the possibility that N < p) resulting from an individually matched case-control study. We develop a simple algorithm for the adaptation of the Lasso and related methods to the conditional logistic regression model. Our proposal relies on the simplification of the calculations involved in the likelihood function. Then, the proposed algorithm iteratively solves reweighted Lasso problems using cyclical coordinate descent, computed along a regularization path. This method can handle large problems and deal with sparse features efficiently. We discuss benefits and drawbacks with respect to the existing available implementations. We also illustrate the interest and use of these techniques on a pharmacoepidemiological study of medication use and traffic safety. More... »

PAGES

s1-s1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-16-s6-s1

DOI

http://dx.doi.org/10.1186/1471-2105-16-s6-s1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003186168

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25916593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Epidemiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sample Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "SISTM team, INRIA, F-33000 Bordeaux, France", 
          "id": "http://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Univ. Bordeaux, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France", 
            "INSERM, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France", 
            "SISTM team, INRIA, F-33000 Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avalos", 
        "givenName": "Marta", 
        "id": "sg:person.0730724605.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730724605.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ. de Pau et des Pays de l'Adour, F-64012 Pau, France", 
          "id": "http://www.grid.ac/institutes/grid.5571.6", 
          "name": [
            "INSERM, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France", 
            "Univ. de Pau et des Pays de l'Adour, F-64012 Pau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pouyes", 
        "givenName": "H\u00e9l\u00e8ne", 
        "id": "sg:person.01205576144.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205576144.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ. de Technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR7253, F-60203 Compi\u00e8gne, France", 
          "id": "http://www.grid.ac/institutes/grid.6227.1", 
          "name": [
            "Univ. de Technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR7253, F-60203 Compi\u00e8gne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandvalet", 
        "givenName": "Yves", 
        "id": "sg:person.015255215731.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France", 
          "id": "http://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Univ. Bordeaux, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France", 
            "INSERM, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orriols", 
        "givenName": "Ludivine", 
        "id": "sg:person.0737415751.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737415751.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France", 
          "id": "http://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Univ. Bordeaux, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France", 
            "INSERM, ISPED, Centre INSERM U897-Epid\u00e9miologie-Biostatistique, F-33000 Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagarde", 
        "givenName": "Emmanuel", 
        "id": "sg:person.01364113311.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364113311.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10654-009-9411-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030736352", 
          "https://doi.org/10.1007/s10654-009-9411-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-13-142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031274821", 
          "https://doi.org/10.1186/1471-2288-13-142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74958-5_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026404908", 
          "https://doi.org/10.1007/978-3-540-74958-5_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-008-9045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032880932", 
          "https://doi.org/10.1007/s00041-008-9045-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-09042-9_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028592643", 
          "https://doi.org/10.1007/978-3-319-09042-9_8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-04-17", 
    "datePublishedReg": "2015-04-17", 
    "description": "This paper considers the problem of estimation and variable selection for large high-dimensional data (high number of predictors p and large sample size N, without excluding the possibility that N < p) resulting from an individually matched case-control study. We develop a simple algorithm for the adaptation of the Lasso and related methods to the conditional logistic regression model. Our proposal relies on the simplification of the calculations involved in the likelihood function. Then, the proposed algorithm iteratively solves reweighted Lasso problems using cyclical coordinate descent, computed along a regularization path. This method can handle large problems and deal with sparse features efficiently. We discuss benefits and drawbacks with respect to the existing available implementations. We also illustrate the interest and use of these techniques on a pharmacoepidemiological study of medication use and traffic safety. ", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-16-s6-s1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "cyclical coordinate descent", 
      "problem of estimation", 
      "simple algorithm", 
      "large high-dimensional data", 
      "high-dimensional data", 
      "regularization path", 
      "lasso problem", 
      "likelihood function", 
      "coordinate descent", 
      "variable selection", 
      "large problems", 
      "available implementations", 
      "algorithm", 
      "problem", 
      "Lasso", 
      "sparse features", 
      "estimation", 
      "simplification", 
      "regression models", 
      "calculations", 
      "model", 
      "path", 
      "function", 
      "descent", 
      "drawbacks", 
      "technique", 
      "respect", 
      "implementation", 
      "data", 
      "traffic safety", 
      "regression", 
      "interest", 
      "selection", 
      "proposal", 
      "features", 
      "use", 
      "study", 
      "logistic regression models", 
      "logistic regression", 
      "adaptation", 
      "benefits", 
      "conditional logistic regression models", 
      "conditional logistic regression", 
      "pharmacoepidemiological studies", 
      "safety", 
      "epidemiological studies", 
      "case-control study", 
      "method", 
      "paper", 
      "medication use", 
      "Sparse conditional logistic regression"
    ], 
    "name": "Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm", 
    "pagination": "s1-s1", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003186168"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-16-s6-s1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25916593"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-16-s6-s1", 
      "https://app.dimensions.ai/details/publication/pub.1003186168"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_651.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-16-s6-s1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s6-s1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s6-s1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s6-s1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s6-s1'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      22 PREDICATES      98 URIs      85 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-16-s6-s1 schema:about N194045d2dd824a96b63330f4db60f925
2 N244940c264264870b26947fc1671eb77
3 N54afc38372aa444399e51d1b24255110
4 N5ca59f650425408fa620e56f9c7d541f
5 N7f05b8080e7a4d608aa14a239212d012
6 N82fc8731a797463391bb6f1d76a0ac3a
7 N9460351eb0c841d9bb6ab0fe4c7604cb
8 N9aada09d6f1f4a8ead125ec12bad5ee5
9 Naedfc9cf1a014810800e8dcdb3b9e620
10 Nb75d6cd4b385440eaf95f3cad555e4e1
11 Nbb9a1ae0ca9d41888149ac3645c44a4f
12 Nbcd1af26d9a44100b6f56e92584091b8
13 Nc98300f2f141495180994e62328ace8c
14 Nd718f07856094b12bf3ff55860ccaaac
15 Ne1071f0b713743fa97d86efb1f53af59
16 Nf7d8a915292a4f6db032e8d5ed3412a7
17 anzsrc-for:08
18 anzsrc-for:0801
19 schema:author Nad5c03f5d8604ef1b03043d4fcf4578d
20 schema:citation sg:pub.10.1007/978-3-319-09042-9_8
21 sg:pub.10.1007/978-3-540-74958-5_28
22 sg:pub.10.1007/s00041-008-9045-x
23 sg:pub.10.1007/s10654-009-9411-2
24 sg:pub.10.1186/1471-2288-13-142
25 schema:datePublished 2015-04-17
26 schema:datePublishedReg 2015-04-17
27 schema:description This paper considers the problem of estimation and variable selection for large high-dimensional data (high number of predictors p and large sample size N, without excluding the possibility that N < p) resulting from an individually matched case-control study. We develop a simple algorithm for the adaptation of the Lasso and related methods to the conditional logistic regression model. Our proposal relies on the simplification of the calculations involved in the likelihood function. Then, the proposed algorithm iteratively solves reweighted Lasso problems using cyclical coordinate descent, computed along a regularization path. This method can handle large problems and deal with sparse features efficiently. We discuss benefits and drawbacks with respect to the existing available implementations. We also illustrate the interest and use of these techniques on a pharmacoepidemiological study of medication use and traffic safety.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N2d89241b211a43c899529f46456a4fdb
32 N4569752922b04ae890249e2985a58f1c
33 sg:journal.1023786
34 schema:keywords Lasso
35 Sparse conditional logistic regression
36 adaptation
37 algorithm
38 available implementations
39 benefits
40 calculations
41 case-control study
42 conditional logistic regression
43 conditional logistic regression models
44 coordinate descent
45 cyclical coordinate descent
46 data
47 descent
48 drawbacks
49 epidemiological studies
50 estimation
51 features
52 function
53 high-dimensional data
54 implementation
55 interest
56 large high-dimensional data
57 large problems
58 lasso problem
59 likelihood function
60 logistic regression
61 logistic regression models
62 medication use
63 method
64 model
65 paper
66 path
67 pharmacoepidemiological studies
68 problem
69 problem of estimation
70 proposal
71 regression
72 regression models
73 regularization path
74 respect
75 safety
76 selection
77 simple algorithm
78 simplification
79 sparse features
80 study
81 technique
82 traffic safety
83 use
84 variable selection
85 schema:name Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm
86 schema:pagination s1-s1
87 schema:productId N34c0636b9bd54cd59c48ff5cf7febefe
88 Nd583eb4a04764e22bd222422f6c1137d
89 Nf91794989f0c4f55b1d6354dc65d6dbc
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003186168
91 https://doi.org/10.1186/1471-2105-16-s6-s1
92 schema:sdDatePublished 2022-01-01T18:35
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N77da39cea8484678a87b4e02efb20fa4
95 schema:url https://doi.org/10.1186/1471-2105-16-s6-s1
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N194045d2dd824a96b63330f4db60f925 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Age Factors
101 rdf:type schema:DefinedTerm
102 N1959bbdcdcdf4bfa861e44c4602d2f38 rdf:first sg:person.01364113311.78
103 rdf:rest rdf:nil
104 N244940c264264870b26947fc1671eb77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Aged
106 rdf:type schema:DefinedTerm
107 N2d89241b211a43c899529f46456a4fdb schema:issueNumber Suppl 6
108 rdf:type schema:PublicationIssue
109 N34c0636b9bd54cd59c48ff5cf7febefe schema:name dimensions_id
110 schema:value pub.1003186168
111 rdf:type schema:PropertyValue
112 N4569752922b04ae890249e2985a58f1c schema:volumeNumber 16
113 rdf:type schema:PublicationVolume
114 N4ddd155b1305453c84144b85c994de0d rdf:first sg:person.015255215731.52
115 rdf:rest Nb313700ca2114dcea2cec5e1b3a8e370
116 N54afc38372aa444399e51d1b24255110 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Logistic Models
118 rdf:type schema:DefinedTerm
119 N5ca59f650425408fa620e56f9c7d541f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Aged, 80 and over
121 rdf:type schema:DefinedTerm
122 N77da39cea8484678a87b4e02efb20fa4 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N7f05b8080e7a4d608aa14a239212d012 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Likelihood Functions
126 rdf:type schema:DefinedTerm
127 N82fc8731a797463391bb6f1d76a0ac3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Young Adult
129 rdf:type schema:DefinedTerm
130 N88e5055e66c8473cb65b2e16ca8e8d39 rdf:first sg:person.01205576144.10
131 rdf:rest N4ddd155b1305453c84144b85c994de0d
132 N9460351eb0c841d9bb6ab0fe4c7604cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 N9aada09d6f1f4a8ead125ec12bad5ee5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Case-Control Studies
137 rdf:type schema:DefinedTerm
138 Nad5c03f5d8604ef1b03043d4fcf4578d rdf:first sg:person.0730724605.53
139 rdf:rest N88e5055e66c8473cb65b2e16ca8e8d39
140 Naedfc9cf1a014810800e8dcdb3b9e620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Models, Theoretical
142 rdf:type schema:DefinedTerm
143 Nb313700ca2114dcea2cec5e1b3a8e370 rdf:first sg:person.0737415751.98
144 rdf:rest N1959bbdcdcdf4bfa861e44c4602d2f38
145 Nb75d6cd4b385440eaf95f3cad555e4e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Sample Size
147 rdf:type schema:DefinedTerm
148 Nbb9a1ae0ca9d41888149ac3645c44a4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Molecular Epidemiology
150 rdf:type schema:DefinedTerm
151 Nbcd1af26d9a44100b6f56e92584091b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Adult
153 rdf:type schema:DefinedTerm
154 Nc98300f2f141495180994e62328ace8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Regression Analysis
156 rdf:type schema:DefinedTerm
157 Nd583eb4a04764e22bd222422f6c1137d schema:name pubmed_id
158 schema:value 25916593
159 rdf:type schema:PropertyValue
160 Nd718f07856094b12bf3ff55860ccaaac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Middle Aged
162 rdf:type schema:DefinedTerm
163 Ne1071f0b713743fa97d86efb1f53af59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Algorithms
165 rdf:type schema:DefinedTerm
166 Nf7d8a915292a4f6db032e8d5ed3412a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Adolescent
168 rdf:type schema:DefinedTerm
169 Nf91794989f0c4f55b1d6354dc65d6dbc schema:name doi
170 schema:value 10.1186/1471-2105-16-s6-s1
171 rdf:type schema:PropertyValue
172 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
173 schema:name Information and Computing Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
176 schema:name Artificial Intelligence and Image Processing
177 rdf:type schema:DefinedTerm
178 sg:journal.1023786 schema:issn 1471-2105
179 schema:name BMC Bioinformatics
180 schema:publisher Springer Nature
181 rdf:type schema:Periodical
182 sg:person.01205576144.10 schema:affiliation grid-institutes:grid.5571.6
183 schema:familyName Pouyes
184 schema:givenName Hélène
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205576144.10
186 rdf:type schema:Person
187 sg:person.01364113311.78 schema:affiliation grid-institutes:grid.412041.2
188 schema:familyName Lagarde
189 schema:givenName Emmanuel
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364113311.78
191 rdf:type schema:Person
192 sg:person.015255215731.52 schema:affiliation grid-institutes:grid.6227.1
193 schema:familyName Grandvalet
194 schema:givenName Yves
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52
196 rdf:type schema:Person
197 sg:person.0730724605.53 schema:affiliation grid-institutes:grid.5328.c
198 schema:familyName Avalos
199 schema:givenName Marta
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730724605.53
201 rdf:type schema:Person
202 sg:person.0737415751.98 schema:affiliation grid-institutes:grid.412041.2
203 schema:familyName Orriols
204 schema:givenName Ludivine
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737415751.98
206 rdf:type schema:Person
207 sg:pub.10.1007/978-3-319-09042-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028592643
208 https://doi.org/10.1007/978-3-319-09042-9_8
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/978-3-540-74958-5_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026404908
211 https://doi.org/10.1007/978-3-540-74958-5_28
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00041-008-9045-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032880932
214 https://doi.org/10.1007/s00041-008-9045-x
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s10654-009-9411-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030736352
217 https://doi.org/10.1007/s10654-009-9411-2
218 rdf:type schema:CreativeWork
219 sg:pub.10.1186/1471-2288-13-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031274821
220 https://doi.org/10.1186/1471-2288-13-142
221 rdf:type schema:CreativeWork
222 grid-institutes:grid.412041.2 schema:alternateName INSERM, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
223 schema:name INSERM, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
224 Univ. Bordeaux, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
225 rdf:type schema:Organization
226 grid-institutes:grid.5328.c schema:alternateName SISTM team, INRIA, F-33000 Bordeaux, France
227 schema:name INSERM, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
228 SISTM team, INRIA, F-33000 Bordeaux, France
229 Univ. Bordeaux, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
230 rdf:type schema:Organization
231 grid-institutes:grid.5571.6 schema:alternateName Univ. de Pau et des Pays de l'Adour, F-64012 Pau, France
232 schema:name INSERM, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France
233 Univ. de Pau et des Pays de l'Adour, F-64012 Pau, France
234 rdf:type schema:Organization
235 grid-institutes:grid.6227.1 schema:alternateName Univ. de Technologie de Compiègne, CNRS, Heudiasyc UMR7253, F-60203 Compiègne, France
236 schema:name Univ. de Technologie de Compiègne, CNRS, Heudiasyc UMR7253, F-60203 Compiègne, France
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...