Extracting biomedical events from pairs of text entities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06-23

AUTHORS

Xiao Liu, Antoine Bordes, Yves Grandvalet

ABSTRACT

BACKGROUND: Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. RESULTS: We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition. More... »

PAGES

s8-s8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-16-s10-s8

DOI

http://dx.doi.org/10.1186/1471-2105-16-s10-s8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019325367

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26201478


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Knowledge Bases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Natural Language Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sorbonne universit\u00e9s, Universit\u00e9 de technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compi\u00e8gne cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sorbonne universit\u00e9s, Universit\u00e9 de technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compi\u00e8gne cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xiao", 
        "id": "sg:person.01253524451.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253524451.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne universit\u00e9s, Universit\u00e9 de technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compi\u00e8gne cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sorbonne universit\u00e9s, Universit\u00e9 de technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compi\u00e8gne cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bordes", 
        "givenName": "Antoine", 
        "id": "sg:person.011677245026.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677245026.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne universit\u00e9s, Universit\u00e9 de technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compi\u00e8gne cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sorbonne universit\u00e9s, Universit\u00e9 de technologie de Compi\u00e8gne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compi\u00e8gne cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandvalet", 
        "givenName": "Yves", 
        "id": "sg:person.015255215731.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-13-s11-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030827415", 
          "https://doi.org/10.1186/1471-2105-13-s11-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013080678", 
          "https://doi.org/10.1186/1471-2105-13-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023798123", 
          "https://doi.org/10.1186/1471-2105-13-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013921279", 
          "https://doi.org/10.1186/1471-2105-13-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-s11-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018126951", 
          "https://doi.org/10.1186/1471-2105-13-s11-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006625241", 
          "https://doi.org/10.1186/1471-2105-13-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009770106", 
          "https://doi.org/10.1186/1471-2105-13-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-s11-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048638314", 
          "https://doi.org/10.1186/1471-2105-13-s11-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-s11-s5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027354691", 
          "https://doi.org/10.1186/1471-2105-13-s11-s5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-s11-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037088739", 
          "https://doi.org/10.1186/1471-2105-13-s11-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-s11-s9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031667803", 
          "https://doi.org/10.1186/1471-2105-13-s11-s9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045096830", 
          "https://doi.org/10.1186/1471-2105-13-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06-23", 
    "datePublishedReg": "2015-06-23", 
    "description": "BACKGROUND: Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline.\nRESULTS: We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-16-s10-s8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "text entities", 
      "biomedical events", 
      "event extraction", 
      "biomedical documents", 
      "biomedical event extraction", 
      "natural language processing", 
      "high-level information", 
      "unstructured free text", 
      "efficient automatic method", 
      "domain-specific jargon", 
      "support vector machine", 
      "low memory capacity", 
      "Markov random field", 
      "information retrieval", 
      "advanced queries", 
      "biomedical text", 
      "multiclass classifier", 
      "language processing", 
      "heavy processing", 
      "vector machine", 
      "huge amount", 
      "free text", 
      "prediction time", 
      "automatic method", 
      "joint features", 
      "candidate pairs", 
      "pipeline approach", 
      "classification of pairs", 
      "computational tools", 
      "random fields", 
      "event types", 
      "extensive usage", 
      "documents", 
      "memory capacity", 
      "related fields", 
      "intermediate problems", 
      "recursive process", 
      "queries", 
      "better results", 
      "short training", 
      "processing", 
      "classifier", 
      "entities", 
      "retrieval", 
      "text", 
      "machine", 
      "joint model", 
      "syntax", 
      "extraction", 
      "task", 
      "specific disciplines", 
      "distinctive dependencies", 
      "classification", 
      "registration", 
      "usage", 
      "database", 
      "information", 
      "tool", 
      "model", 
      "inference", 
      "method", 
      "challenges", 
      "dependency", 
      "researchers", 
      "features", 
      "domain", 
      "training", 
      "calls", 
      "field", 
      "jargon", 
      "organization", 
      "disciplines", 
      "pairs", 
      "class", 
      "process", 
      "time", 
      "practitioners", 
      "amount", 
      "events", 
      "results", 
      "molecular biology", 
      "types", 
      "peculiarities", 
      "form", 
      "biology", 
      "capacity", 
      "edition", 
      "medicine", 
      "argument", 
      "report", 
      "paper", 
      "problem", 
      "approach", 
      "electronic biomedical documents", 
      "molecular biology reports", 
      "biology reports", 
      "genomic papers", 
      "massive data flow calls", 
      "data flow calls", 
      "flow calls", 
      "usual computational tools", 
      "model simplifies inference", 
      "simplifies inference", 
      "usual pipeline approaches", 
      "complex intermediate problem", 
      "sophisticated joint features", 
      "core event extraction", 
      "Genia task", 
      "BioNLP challenges"
    ], 
    "name": "Extracting biomedical events from pairs of text entities", 
    "pagination": "s8-s8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019325367"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-16-s10-s8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26201478"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-16-s10-s8", 
      "https://app.dimensions.ai/details/publication/pub.1019325367"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_657.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-16-s10-s8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s10-s8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s10-s8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s10-s8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s10-s8'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      22 PREDICATES      157 URIs      136 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-16-s10-s8 schema:about N1b986e286be34a8ea2dc8381e5a69a86
2 N1bcd287bd107438d96d309a2195cd9bf
3 N3cb57a43145c4918bdd5602516d99e00
4 N3f1b262737ad439ea17f4b0128d60354
5 N3ff32ad32bfd42cebefd7adf59855370
6 Nb7b3ed3aff314d23a607e459db5efd43
7 Nbcf3e91624e7421c92647375c8b0224b
8 Nc40e8edc0d2047c7a14270d5c5ce0a31
9 Nfe2a7c7361374191869539a0df2d673d
10 anzsrc-for:08
11 anzsrc-for:0801
12 anzsrc-for:0806
13 schema:author Nc52676f0a2a64adbb7e2e0122e2eb57a
14 schema:citation sg:pub.10.1186/1471-2105-13-1
15 sg:pub.10.1186/1471-2105-13-2
16 sg:pub.10.1186/1471-2105-13-4
17 sg:pub.10.1186/1471-2105-13-5
18 sg:pub.10.1186/1471-2105-13-6
19 sg:pub.10.1186/1471-2105-13-9
20 sg:pub.10.1186/1471-2105-13-s11-s1
21 sg:pub.10.1186/1471-2105-13-s11-s2
22 sg:pub.10.1186/1471-2105-13-s11-s4
23 sg:pub.10.1186/1471-2105-13-s11-s5
24 sg:pub.10.1186/1471-2105-13-s11-s6
25 sg:pub.10.1186/1471-2105-13-s11-s9
26 schema:datePublished 2015-06-23
27 schema:datePublishedReg 2015-06-23
28 schema:description BACKGROUND: Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. RESULTS: We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf Nec65b3d167ae42a68b56ded4829d693c
33 Nfec43ed795604dd4be28e5bf32091897
34 sg:journal.1023786
35 schema:keywords BioNLP challenges
36 Genia task
37 Markov random field
38 advanced queries
39 amount
40 approach
41 argument
42 automatic method
43 better results
44 biology
45 biology reports
46 biomedical documents
47 biomedical event extraction
48 biomedical events
49 biomedical text
50 calls
51 candidate pairs
52 capacity
53 challenges
54 class
55 classification
56 classification of pairs
57 classifier
58 complex intermediate problem
59 computational tools
60 core event extraction
61 data flow calls
62 database
63 dependency
64 disciplines
65 distinctive dependencies
66 documents
67 domain
68 domain-specific jargon
69 edition
70 efficient automatic method
71 electronic biomedical documents
72 entities
73 event extraction
74 event types
75 events
76 extensive usage
77 extraction
78 features
79 field
80 flow calls
81 form
82 free text
83 genomic papers
84 heavy processing
85 high-level information
86 huge amount
87 inference
88 information
89 information retrieval
90 intermediate problems
91 jargon
92 joint features
93 joint model
94 language processing
95 low memory capacity
96 machine
97 massive data flow calls
98 medicine
99 memory capacity
100 method
101 model
102 model simplifies inference
103 molecular biology
104 molecular biology reports
105 multiclass classifier
106 natural language processing
107 organization
108 pairs
109 paper
110 peculiarities
111 pipeline approach
112 practitioners
113 prediction time
114 problem
115 process
116 processing
117 queries
118 random fields
119 recursive process
120 registration
121 related fields
122 report
123 researchers
124 results
125 retrieval
126 short training
127 simplifies inference
128 sophisticated joint features
129 specific disciplines
130 support vector machine
131 syntax
132 task
133 text
134 text entities
135 time
136 tool
137 training
138 types
139 unstructured free text
140 usage
141 usual computational tools
142 usual pipeline approaches
143 vector machine
144 schema:name Extracting biomedical events from pairs of text entities
145 schema:pagination s8-s8
146 schema:productId N6bb3d0fba9414f7a925570988c73117a
147 Na2aa25a0e7d84ed8b338aaa32531c3e7
148 Nc6e42741a6a74f9b817f0f62eeba1d57
149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019325367
150 https://doi.org/10.1186/1471-2105-16-s10-s8
151 schema:sdDatePublished 2022-01-01T18:35
152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
153 schema:sdPublisher Ne3cc0e3102c84ca1b0100815c0464c6e
154 schema:url https://doi.org/10.1186/1471-2105-16-s10-s8
155 sgo:license sg:explorer/license/
156 sgo:sdDataset articles
157 rdf:type schema:ScholarlyArticle
158 N1b986e286be34a8ea2dc8381e5a69a86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Biomedical Research
160 rdf:type schema:DefinedTerm
161 N1bcd287bd107438d96d309a2195cd9bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Databases, Factual
163 rdf:type schema:DefinedTerm
164 N3cb57a43145c4918bdd5602516d99e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Knowledge Bases
166 rdf:type schema:DefinedTerm
167 N3f1b262737ad439ea17f4b0128d60354 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Natural Language Processing
169 rdf:type schema:DefinedTerm
170 N3ff32ad32bfd42cebefd7adf59855370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Support Vector Machine
172 rdf:type schema:DefinedTerm
173 N6bb3d0fba9414f7a925570988c73117a schema:name doi
174 schema:value 10.1186/1471-2105-16-s10-s8
175 rdf:type schema:PropertyValue
176 Na2aa25a0e7d84ed8b338aaa32531c3e7 schema:name dimensions_id
177 schema:value pub.1019325367
178 rdf:type schema:PropertyValue
179 Nb7b3ed3aff314d23a607e459db5efd43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Models, Theoretical
181 rdf:type schema:DefinedTerm
182 Nbcf3e91624e7421c92647375c8b0224b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Data Mining
184 rdf:type schema:DefinedTerm
185 Nc40e8edc0d2047c7a14270d5c5ce0a31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Humans
187 rdf:type schema:DefinedTerm
188 Nc52676f0a2a64adbb7e2e0122e2eb57a rdf:first sg:person.01253524451.00
189 rdf:rest Nfd21a56efc974823b718a368499bde51
190 Nc6e42741a6a74f9b817f0f62eeba1d57 schema:name pubmed_id
191 schema:value 26201478
192 rdf:type schema:PropertyValue
193 Ne3cc0e3102c84ca1b0100815c0464c6e schema:name Springer Nature - SN SciGraph project
194 rdf:type schema:Organization
195 Neac8723d51c74108978402db39c2aba3 rdf:first sg:person.015255215731.52
196 rdf:rest rdf:nil
197 Nec65b3d167ae42a68b56ded4829d693c schema:issueNumber Suppl 10
198 rdf:type schema:PublicationIssue
199 Nfd21a56efc974823b718a368499bde51 rdf:first sg:person.011677245026.93
200 rdf:rest Neac8723d51c74108978402db39c2aba3
201 Nfe2a7c7361374191869539a0df2d673d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Computational Biology
203 rdf:type schema:DefinedTerm
204 Nfec43ed795604dd4be28e5bf32091897 schema:volumeNumber 16
205 rdf:type schema:PublicationVolume
206 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
207 schema:name Information and Computing Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
210 schema:name Artificial Intelligence and Image Processing
211 rdf:type schema:DefinedTerm
212 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
213 schema:name Information Systems
214 rdf:type schema:DefinedTerm
215 sg:journal.1023786 schema:issn 1471-2105
216 schema:name BMC Bioinformatics
217 schema:publisher Springer Nature
218 rdf:type schema:Periodical
219 sg:person.011677245026.93 schema:affiliation grid-institutes:None
220 schema:familyName Bordes
221 schema:givenName Antoine
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677245026.93
223 rdf:type schema:Person
224 sg:person.01253524451.00 schema:affiliation grid-institutes:None
225 schema:familyName Liu
226 schema:givenName Xiao
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253524451.00
228 rdf:type schema:Person
229 sg:person.015255215731.52 schema:affiliation grid-institutes:None
230 schema:familyName Grandvalet
231 schema:givenName Yves
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52
233 rdf:type schema:Person
234 sg:pub.10.1186/1471-2105-13-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770106
235 https://doi.org/10.1186/1471-2105-13-1
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1471-2105-13-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023798123
238 https://doi.org/10.1186/1471-2105-13-2
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1471-2105-13-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013921279
241 https://doi.org/10.1186/1471-2105-13-4
242 rdf:type schema:CreativeWork
243 sg:pub.10.1186/1471-2105-13-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045096830
244 https://doi.org/10.1186/1471-2105-13-5
245 rdf:type schema:CreativeWork
246 sg:pub.10.1186/1471-2105-13-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006625241
247 https://doi.org/10.1186/1471-2105-13-6
248 rdf:type schema:CreativeWork
249 sg:pub.10.1186/1471-2105-13-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013080678
250 https://doi.org/10.1186/1471-2105-13-9
251 rdf:type schema:CreativeWork
252 sg:pub.10.1186/1471-2105-13-s11-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030827415
253 https://doi.org/10.1186/1471-2105-13-s11-s1
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/1471-2105-13-s11-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037088739
256 https://doi.org/10.1186/1471-2105-13-s11-s2
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1471-2105-13-s11-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018126951
259 https://doi.org/10.1186/1471-2105-13-s11-s4
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/1471-2105-13-s11-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354691
262 https://doi.org/10.1186/1471-2105-13-s11-s5
263 rdf:type schema:CreativeWork
264 sg:pub.10.1186/1471-2105-13-s11-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048638314
265 https://doi.org/10.1186/1471-2105-13-s11-s6
266 rdf:type schema:CreativeWork
267 sg:pub.10.1186/1471-2105-13-s11-s9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031667803
268 https://doi.org/10.1186/1471-2105-13-s11-s9
269 rdf:type schema:CreativeWork
270 grid-institutes:None schema:alternateName Sorbonne universités, Université de technologie de Compiègne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compiègne cedex, France
271 schema:name Sorbonne universités, Université de technologie de Compiègne, CNRS, Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compiègne cedex, France
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...