Data-driven encoding for quantitative genetic trait prediction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-18

AUTHORS

Dan He, Zhanyong Wang, Laxmi Parida

ABSTRACT

MotivationGiven a set of biallelic molecular markers, such as SNPs, with genotype values on a collection of plant, animal or human samples, the goal of quantitative genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Quantitative genetic trait prediction is usually represented as linear regression models which require quantitative encodings for the genotypes: the three distinct genotype values, corresponding to one heterozygous and two homozygous alleles, are usually coded as integers, and manipulated algebraically in the model. Further, epistasis between multiple markers is modeled as multiplication between the markers: it is unclear that the regression model continues to be effective under this. In this work we investigate the effects of encodings to the quantitative genetic trait prediction problem.ResultsWe first showed that different encodings lead to different prediction accuracies, in many test cases. We then proposed a data-driven encoding strategy, where we encode the genotypes according to their distribution in the phenotypes and we allow each marker to have different encodings. We show in our experiments that this encoding strategy is able to improve the performance of the genetic trait prediction method and it is more helpful for the oligogenic traits, whose values rely on a relatively small set of markers. To the best of our knowledge, this is the first paper that discusses the effects of encodings to the genetic trait prediction problem. More... »

PAGES

s10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-16-s1-s10

DOI

http://dx.doi.org/10.1186/1471-2105-16-s1-s10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049624986

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25707435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterozygote", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homozygote", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Dan", 
        "id": "sg:person.0607503176.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607503176.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of California, Los Angeles, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Computer Science, University of California, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhanyong", 
        "id": "sg:person.0670123347.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670123347.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms1467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011822475", 
          "https://doi.org/10.1038/ncomms1467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000991887", 
          "https://doi.org/10.1023/b:stco.0000035301.49549.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008850890", 
          "https://doi.org/10.1038/ng2110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017217223", 
          "https://doi.org/10.1038/ng1537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02-18", 
    "datePublishedReg": "2015-02-18", 
    "description": "MotivationGiven a set of biallelic molecular markers, such as SNPs, with genotype values on a collection of plant, animal or human samples, the goal of quantitative genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Quantitative genetic trait prediction is usually represented as linear regression models which require quantitative encodings for the genotypes: the three distinct genotype values, corresponding to one heterozygous and two homozygous alleles, are usually coded as integers, and manipulated algebraically in the model. Further, epistasis between multiple markers is modeled as multiplication between the markers: it is unclear that the regression model continues to be effective under this. In this work we investigate the effects of encodings to the quantitative genetic trait prediction problem.ResultsWe first showed that different encodings lead to different prediction accuracies, in many test cases. We then proposed a data-driven encoding strategy, where we encode the genotypes according to their distribution in the phenotypes and we allow each marker to have different encodings. We show in our experiments that this encoding strategy is able to improve the performance of the genetic trait prediction method and it is more helpful for the oligogenic traits, whose values rely on a relatively small set of markers. To the best of our knowledge, this is the first paper that discusses the effects of encodings to the genetic trait prediction problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-16-s1-s10", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "quantitative genetic trait prediction", 
      "genetic trait prediction", 
      "genetic trait prediction problem", 
      "trait prediction", 
      "genotype values", 
      "effects of encodings", 
      "collection of plants", 
      "biallelic molecular markers", 
      "marker effects", 
      "oligogenic traits", 
      "trait values", 
      "molecular markers", 
      "quantitative trait values", 
      "homozygous alleles", 
      "genotypes", 
      "different encodings", 
      "different prediction accuracy", 
      "encoding", 
      "traits", 
      "plants", 
      "SNPs", 
      "markers", 
      "epistasis", 
      "prediction accuracy", 
      "prediction problem", 
      "animals", 
      "regression models", 
      "alleles", 
      "linear regression models", 
      "multiple markers", 
      "strategies", 
      "effect", 
      "small set", 
      "values", 
      "human samples", 
      "multiplication", 
      "experiments", 
      "collection", 
      "prediction", 
      "goal", 
      "model", 
      "problem", 
      "performance", 
      "knowledge", 
      "phenotype", 
      "set", 
      "samples", 
      "distribution", 
      "first paper", 
      "accuracy", 
      "prediction method", 
      "work", 
      "quantitative encodings", 
      "ResultsWe", 
      "method", 
      "paper", 
      "cases", 
      "test cases", 
      "integers"
    ], 
    "name": "Data-driven encoding for quantitative genetic trait prediction", 
    "pagination": "s10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049624986"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-16-s1-s10"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25707435"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-16-s1-s10", 
      "https://app.dimensions.ai/details/publication/pub.1049624986"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_669.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-16-s1-s10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s1-s10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s1-s10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s1-s10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-16-s1-s10'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      102 URIs      89 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-16-s1-s10 schema:about N01ce9727d2364d29b245b01fce75d3fa
2 N2909ddd872ff41659bf96e1860410d86
3 N47161719917c4d63aeefa4d9f340dc93
4 N59041e04027543cea0d69375b33e8f2a
5 N629676b792114ac2814886e9fe0db098
6 N6ef5327ca1c04c8095cd1c17885aa8fc
7 N988f10e8b99b40aa9e382b073a741de8
8 N991a65b7b9104c9f8644e555bc089ac0
9 N9ab2a6e0cdeb4373b9fc9a397a3a94d5
10 Na3fe7e4aaac54c2abb58bf2b3d93058a
11 Nbfe0caab524a4978ba0aed82377196c5
12 Nc15c7bfc230e4e2792adc41cb2073818
13 Nebe99e8d9bc34d718bff0c150d33b146
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N8e145044480e4542a4d0e0cd193ed0ef
17 schema:citation sg:pub.10.1007/bf00994018
18 sg:pub.10.1023/b:stco.0000035301.49549.88
19 sg:pub.10.1038/ncomms1467
20 sg:pub.10.1038/ng1537
21 sg:pub.10.1038/ng2110
22 schema:datePublished 2015-02-18
23 schema:datePublishedReg 2015-02-18
24 schema:description MotivationGiven a set of biallelic molecular markers, such as SNPs, with genotype values on a collection of plant, animal or human samples, the goal of quantitative genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Quantitative genetic trait prediction is usually represented as linear regression models which require quantitative encodings for the genotypes: the three distinct genotype values, corresponding to one heterozygous and two homozygous alleles, are usually coded as integers, and manipulated algebraically in the model. Further, epistasis between multiple markers is modeled as multiplication between the markers: it is unclear that the regression model continues to be effective under this. In this work we investigate the effects of encodings to the quantitative genetic trait prediction problem.ResultsWe first showed that different encodings lead to different prediction accuracies, in many test cases. We then proposed a data-driven encoding strategy, where we encode the genotypes according to their distribution in the phenotypes and we allow each marker to have different encodings. We show in our experiments that this encoding strategy is able to improve the performance of the genetic trait prediction method and it is more helpful for the oligogenic traits, whose values rely on a relatively small set of markers. To the best of our knowledge, this is the first paper that discusses the effects of encodings to the genetic trait prediction problem.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N06929ef1e7554f759986f81a15ee4f0b
28 Nd569ab7cda5b4a96ba9e9c0b4edf7577
29 sg:journal.1023786
30 schema:keywords ResultsWe
31 SNPs
32 accuracy
33 alleles
34 animals
35 biallelic molecular markers
36 cases
37 collection
38 collection of plants
39 different encodings
40 different prediction accuracy
41 distribution
42 effect
43 effects of encodings
44 encoding
45 epistasis
46 experiments
47 first paper
48 genetic trait prediction
49 genetic trait prediction problem
50 genotype values
51 genotypes
52 goal
53 homozygous alleles
54 human samples
55 integers
56 knowledge
57 linear regression models
58 marker effects
59 markers
60 method
61 model
62 molecular markers
63 multiple markers
64 multiplication
65 oligogenic traits
66 paper
67 performance
68 phenotype
69 plants
70 prediction
71 prediction accuracy
72 prediction method
73 prediction problem
74 problem
75 quantitative encodings
76 quantitative genetic trait prediction
77 quantitative trait values
78 regression models
79 samples
80 set
81 small set
82 strategies
83 test cases
84 trait prediction
85 trait values
86 traits
87 values
88 work
89 schema:name Data-driven encoding for quantitative genetic trait prediction
90 schema:pagination s10
91 schema:productId N453818b0786a426c98c2321537309dbe
92 Nda3958e48b1d4748a01c40c76c450f95
93 Ne73c7fcc2c9b4d0eb5b8f215b108f42f
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624986
95 https://doi.org/10.1186/1471-2105-16-s1-s10
96 schema:sdDatePublished 2022-10-01T06:41
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nf91e8623261b46a38e86c5b211d4b09a
99 schema:url https://doi.org/10.1186/1471-2105-16-s1-s10
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N01ce9727d2364d29b245b01fce75d3fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Models, Genetic
105 rdf:type schema:DefinedTerm
106 N06929ef1e7554f759986f81a15ee4f0b schema:volumeNumber 16
107 rdf:type schema:PublicationVolume
108 N2909ddd872ff41659bf96e1860410d86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Phenotype
110 rdf:type schema:DefinedTerm
111 N453818b0786a426c98c2321537309dbe schema:name dimensions_id
112 schema:value pub.1049624986
113 rdf:type schema:PropertyValue
114 N47161719917c4d63aeefa4d9f340dc93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Alleles
116 rdf:type schema:DefinedTerm
117 N59041e04027543cea0d69375b33e8f2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Genetic Markers
119 rdf:type schema:DefinedTerm
120 N629676b792114ac2814886e9fe0db098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Linear Models
122 rdf:type schema:DefinedTerm
123 N6ef5327ca1c04c8095cd1c17885aa8fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Polymorphism, Single Nucleotide
125 rdf:type schema:DefinedTerm
126 N89c1680e4cdb4e87ae9361ef9403d5e1 rdf:first sg:person.01336557015.68
127 rdf:rest rdf:nil
128 N8e145044480e4542a4d0e0cd193ed0ef rdf:first sg:person.0607503176.22
129 rdf:rest Nf4c5966fabaa4c3b8111dbe9ebe2fb9c
130 N988f10e8b99b40aa9e382b073a741de8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Quantitative Trait, Heritable
132 rdf:type schema:DefinedTerm
133 N991a65b7b9104c9f8644e555bc089ac0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 N9ab2a6e0cdeb4373b9fc9a397a3a94d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Genotype
138 rdf:type schema:DefinedTerm
139 Na3fe7e4aaac54c2abb58bf2b3d93058a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Plants
141 rdf:type schema:DefinedTerm
142 Nbfe0caab524a4978ba0aed82377196c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Heterozygote
144 rdf:type schema:DefinedTerm
145 Nc15c7bfc230e4e2792adc41cb2073818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Homozygote
147 rdf:type schema:DefinedTerm
148 Nd569ab7cda5b4a96ba9e9c0b4edf7577 schema:issueNumber Suppl 1
149 rdf:type schema:PublicationIssue
150 Nda3958e48b1d4748a01c40c76c450f95 schema:name doi
151 schema:value 10.1186/1471-2105-16-s1-s10
152 rdf:type schema:PropertyValue
153 Ne73c7fcc2c9b4d0eb5b8f215b108f42f schema:name pubmed_id
154 schema:value 25707435
155 rdf:type schema:PropertyValue
156 Nebe99e8d9bc34d718bff0c150d33b146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Animals
158 rdf:type schema:DefinedTerm
159 Nf4c5966fabaa4c3b8111dbe9ebe2fb9c rdf:first sg:person.0670123347.84
160 rdf:rest N89c1680e4cdb4e87ae9361ef9403d5e1
161 Nf91e8623261b46a38e86c5b211d4b09a schema:name Springer Nature - SN SciGraph project
162 rdf:type schema:Organization
163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
164 schema:name Biological Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
167 schema:name Genetics
168 rdf:type schema:DefinedTerm
169 sg:journal.1023786 schema:issn 1471-2105
170 schema:name BMC Bioinformatics
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
174 schema:familyName Parida
175 schema:givenName Laxmi
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
177 rdf:type schema:Person
178 sg:person.0607503176.22 schema:affiliation grid-institutes:grid.481554.9
179 schema:familyName He
180 schema:givenName Dan
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607503176.22
182 rdf:type schema:Person
183 sg:person.0670123347.84 schema:affiliation grid-institutes:grid.19006.3e
184 schema:familyName Wang
185 schema:givenName Zhanyong
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670123347.84
187 rdf:type schema:Person
188 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
189 https://doi.org/10.1007/bf00994018
190 rdf:type schema:CreativeWork
191 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
192 https://doi.org/10.1023/b:stco.0000035301.49549.88
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/ncomms1467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011822475
195 https://doi.org/10.1038/ncomms1467
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/ng1537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017217223
198 https://doi.org/10.1038/ng1537
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/ng2110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008850890
201 https://doi.org/10.1038/ng2110
202 rdf:type schema:CreativeWork
203 grid-institutes:grid.19006.3e schema:alternateName Department of Computer Science, University of California, Los Angeles, USA
204 schema:name Department of Computer Science, University of California, Los Angeles, USA
205 rdf:type schema:Organization
206 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research, Yorktown Heights, NY, USA
207 schema:name IBM T.J. Watson Research, Yorktown Heights, NY, USA
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...