Structure prediction of polyglutamine disease proteins: comparison of methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05

AUTHORS

Jingran Wen, Daniel R Scoles, Julio C Facelli

ABSTRACT

BACKGROUND: The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is known about the structural changes induced by the expansion of the repeats. Computational methods can provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their performance before large scale prediction work is done. RESULTS: In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to predict the structure of the N-terminal fragment of a protein associated with Huntington's disease with 17 glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs better for the overall task. CONCLUSIONS: Both I-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats. Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q diseases. More... »

PAGES

s11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-s7-s11

DOI

http://dx.doi.org/10.1186/1471-2105-15-s7-s11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018299588

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25080018


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Huntingtin Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Huntington Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Tissue Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Jingran", 
        "id": "sg:person.01134547554.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134547554.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Neurology, University of Utah, Salt Lake City, Utah, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scoles", 
        "givenName": "Daniel R", 
        "id": "sg:person.0741706077.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741706077.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Facelli", 
        "givenName": "Julio C", 
        "id": "sg:person.0720026422.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720026422.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-0653-2_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001198647", 
          "https://doi.org/10.1007/978-1-4614-0653-2_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002695920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2010.12.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003686973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2010.12.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003686973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0040536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004077892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20071619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004113002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20071619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004113002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.2012.687526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004799533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awh586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006329082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006581093", 
          "https://doi.org/10.1038/ng1827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006581093", 
          "https://doi.org/10.1038/ng1827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999469", 
          "https://doi.org/10.1038/nprot.2010.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999469", 
          "https://doi.org/10.1038/nprot.2010.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008225564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainresrev.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008499188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011420568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.041533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012028584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12035-012-8348-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012587935", 
          "https://doi.org/10.1007/s12035-012-8348-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.107.118935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012876684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tins.2008.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015987010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.849004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.2004.04245.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018726840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1196-269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018869487", 
          "https://doi.org/10.1038/ng1196-269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1196-285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019198906", 
          "https://doi.org/10.1038/ng1196-285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pneurobio.2011.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020400230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001756-200110290-00042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020752551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001756-200110290-00042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020752551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001756-200110290-00042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020752551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022512875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026371509", 
          "https://doi.org/10.1186/1471-2105-9-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027955415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12311-008-0027-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028131503", 
          "https://doi.org/10.1007/s12311-008-0027-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030725232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030725232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035055456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1194-221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036365552", 
          "https://doi.org/10.1038/ng1194-221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2012.01.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039173782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/pri.23807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039719861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043779662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043779662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bip.360221211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045206155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-381270-4.00019-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046182923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2009.08.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046422141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2009.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047873150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049446763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050952869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050952869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.23.1.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051773928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052737562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053671309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp1007768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056075489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp1007768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056075489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp305065c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056089932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp306661c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056090710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.54.4.950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064378429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078189204", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "BACKGROUND: The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is known about the structural changes induced by the expansion of the repeats. Computational methods can provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their performance before large scale prediction work is done.\nRESULTS: In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to predict the structure of the N-terminal fragment of a protein associated with Huntington's disease with 17 glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs better for the overall task.\nCONCLUSIONS: Both I-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats. Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q diseases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-s7-s11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439730", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705155", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Structure prediction of polyglutamine disease proteins: comparison of methods", 
    "pagination": "s11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5730fd287a9672bb9b6b6681f8463fc4fe966d2dd00c85b7c69804c9dafc204c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25080018"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-s7-s11"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018299588"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-s7-s11", 
      "https://app.dimensions.ai/details/publication/pub.1018299588"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-15-S7-S11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-s7-s11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-s7-s11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-s7-s11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-s7-s11'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      85 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-s7-s11 schema:about N1a9e9f2e97824f1a87e7442a7d877dbc
2 N1c9b4b628edf4d528f1511ff6a238843
3 N38d52b2f3d634bdaad9458e2c6f939da
4 N44576f63b4244ce8978df921bacef0e1
5 N679d38b2d3c14b46a36c5299a0eb75ea
6 N6b43ad087e3a49d088930017f9e4dd4f
7 N7b8db3857291412b989254f699740db6
8 Nb21e82500bb84f6a88e7bc51cd6b83c6
9 Nbb79f77d1239491fb8a288be670c35c6
10 Neb2d119fae944f12bcd9c16f3ed3b622
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Nf5b1eec7b9884d0fb97888ceb9065c85
14 schema:citation sg:pub.10.1007/978-1-4614-0653-2_27
15 sg:pub.10.1007/s12035-012-8348-8
16 sg:pub.10.1007/s12311-008-0027-y
17 sg:pub.10.1038/ng1194-221
18 sg:pub.10.1038/ng1196-269
19 sg:pub.10.1038/ng1196-285
20 sg:pub.10.1038/ng1827
21 sg:pub.10.1038/nprot.2010.5
22 sg:pub.10.1186/1471-2105-9-40
23 https://app.dimensions.ai/details/publication/pub.1078189204
24 https://doi.org/10.1002/bip.360221211
25 https://doi.org/10.1002/jcc.20084
26 https://doi.org/10.1002/prot.20264
27 https://doi.org/10.1002/prot.22540
28 https://doi.org/10.1002/prot.22589
29 https://doi.org/10.1016/b978-0-12-381270-4.00019-6
30 https://doi.org/10.1016/j.brainresrev.2008.08.003
31 https://doi.org/10.1016/j.jmb.2009.08.034
32 https://doi.org/10.1016/j.jmb.2012.01.030
33 https://doi.org/10.1016/j.pneurobio.2011.11.006
34 https://doi.org/10.1016/j.str.2009.08.002
35 https://doi.org/10.1016/j.str.2009.08.004
36 https://doi.org/10.1016/j.tins.2008.07.004
37 https://doi.org/10.1016/j.ymeth.2010.12.035
38 https://doi.org/10.1021/jp1007768
39 https://doi.org/10.1021/jp305065c
40 https://doi.org/10.1021/jp306661c
41 https://doi.org/10.1042/bj20071619
42 https://doi.org/10.1080/07391102.2012.687526
43 https://doi.org/10.1093/bioinformatics/bts600
44 https://doi.org/10.1093/brain/awh586
45 https://doi.org/10.1093/hmg/ddg295
46 https://doi.org/10.1093/nar/28.1.235
47 https://doi.org/10.1093/nar/gki524
48 https://doi.org/10.1093/nar/gkp403
49 https://doi.org/10.1097/00001756-200110290-00042
50 https://doi.org/10.1101/gr.849004
51 https://doi.org/10.1111/j.1432-1033.2004.04245.x
52 https://doi.org/10.1146/annurev.neuro.23.1.217
53 https://doi.org/10.1212/wnl.54.4.950
54 https://doi.org/10.1371/journal.pcbi.1000772
55 https://doi.org/10.1371/journal.pone.0023294
56 https://doi.org/10.1371/journal.pone.0040536
57 https://doi.org/10.1529/biophysj.104.041533
58 https://doi.org/10.1529/biophysj.107.118935
59 https://doi.org/10.4161/pri.23807
60 schema:datePublished 2014-05
61 schema:datePublishedReg 2014-05-01
62 schema:description BACKGROUND: The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is known about the structural changes induced by the expansion of the repeats. Computational methods can provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their performance before large scale prediction work is done. RESULTS: In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to predict the structure of the N-terminal fragment of a protein associated with Huntington's disease with 17 glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs better for the overall task. CONCLUSIONS: Both I-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats. Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q diseases.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree true
66 schema:isPartOf N957798350b9543aaac5b09ce85ee671c
67 Ned5998677f904efaacf63cd7fb7e61c1
68 sg:journal.1023786
69 schema:name Structure prediction of polyglutamine disease proteins: comparison of methods
70 schema:pagination s11
71 schema:productId N000710315c7e4518ba552717ba44d428
72 N3fa72abafbe64cf2831cc965d6bb56fc
73 N50ebdd672e1e4ddfa0b8f4d20cc1ce1d
74 N7e927c7e384645b4a7fd1000a1429e32
75 Ne713ea28a3c34257adb43f06d371b30d
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018299588
77 https://doi.org/10.1186/1471-2105-15-s7-s11
78 schema:sdDatePublished 2019-04-11T00:14
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N1977eae9f7d34ecc89d8de89b2146252
81 schema:url http://link.springer.com/10.1186%2F1471-2105-15-S7-S11
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N000710315c7e4518ba552717ba44d428 schema:name readcube_id
86 schema:value 5730fd287a9672bb9b6b6681f8463fc4fe966d2dd00c85b7c69804c9dafc204c
87 rdf:type schema:PropertyValue
88 N1977eae9f7d34ecc89d8de89b2146252 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N1a9e9f2e97824f1a87e7442a7d877dbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Huntington Disease
92 rdf:type schema:DefinedTerm
93 N1c9b4b628edf4d528f1511ff6a238843 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Humans
95 rdf:type schema:DefinedTerm
96 N38d52b2f3d634bdaad9458e2c6f939da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Protein Conformation
98 rdf:type schema:DefinedTerm
99 N3fa72abafbe64cf2831cc965d6bb56fc schema:name dimensions_id
100 schema:value pub.1018299588
101 rdf:type schema:PropertyValue
102 N43796da2a55a4b3ba8495157634ffd55 rdf:first sg:person.0741706077.48
103 rdf:rest Ne72d7875a3a24d89bc5026a897654c81
104 N44576f63b4244ce8978df921bacef0e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Molecular
106 rdf:type schema:DefinedTerm
107 N50ebdd672e1e4ddfa0b8f4d20cc1ce1d schema:name pubmed_id
108 schema:value 25080018
109 rdf:type schema:PropertyValue
110 N679d38b2d3c14b46a36c5299a0eb75ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Amino Acid Sequence
112 rdf:type schema:DefinedTerm
113 N6b43ad087e3a49d088930017f9e4dd4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Nerve Tissue Proteins
115 rdf:type schema:DefinedTerm
116 N7b8db3857291412b989254f699740db6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Molecular Sequence Data
118 rdf:type schema:DefinedTerm
119 N7e927c7e384645b4a7fd1000a1429e32 schema:name nlm_unique_id
120 schema:value 100965194
121 rdf:type schema:PropertyValue
122 N957798350b9543aaac5b09ce85ee671c schema:issueNumber Suppl 7
123 rdf:type schema:PublicationIssue
124 Nb21e82500bb84f6a88e7bc51cd6b83c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Huntingtin Protein
126 rdf:type schema:DefinedTerm
127 Nbb79f77d1239491fb8a288be670c35c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Peptides
129 rdf:type schema:DefinedTerm
130 Ne713ea28a3c34257adb43f06d371b30d schema:name doi
131 schema:value 10.1186/1471-2105-15-s7-s11
132 rdf:type schema:PropertyValue
133 Ne72d7875a3a24d89bc5026a897654c81 rdf:first sg:person.0720026422.59
134 rdf:rest rdf:nil
135 Neb2d119fae944f12bcd9c16f3ed3b622 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Software
137 rdf:type schema:DefinedTerm
138 Ned5998677f904efaacf63cd7fb7e61c1 schema:volumeNumber 15
139 rdf:type schema:PublicationVolume
140 Nf5b1eec7b9884d0fb97888ceb9065c85 rdf:first sg:person.01134547554.63
141 rdf:rest N43796da2a55a4b3ba8495157634ffd55
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biochemistry and Cell Biology
147 rdf:type schema:DefinedTerm
148 sg:grant.2439730 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-15-s7-s11
149 rdf:type schema:MonetaryGrant
150 sg:grant.2705155 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-15-s7-s11
151 rdf:type schema:MonetaryGrant
152 sg:journal.1023786 schema:issn 1471-2105
153 schema:name BMC Bioinformatics
154 rdf:type schema:Periodical
155 sg:person.01134547554.63 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
156 schema:familyName Wen
157 schema:givenName Jingran
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134547554.63
159 rdf:type schema:Person
160 sg:person.0720026422.59 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
161 schema:familyName Facelli
162 schema:givenName Julio C
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720026422.59
164 rdf:type schema:Person
165 sg:person.0741706077.48 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
166 schema:familyName Scoles
167 schema:givenName Daniel R
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741706077.48
169 rdf:type schema:Person
170 sg:pub.10.1007/978-1-4614-0653-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001198647
171 https://doi.org/10.1007/978-1-4614-0653-2_27
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s12035-012-8348-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012587935
174 https://doi.org/10.1007/s12035-012-8348-8
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s12311-008-0027-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028131503
177 https://doi.org/10.1007/s12311-008-0027-y
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ng1194-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036365552
180 https://doi.org/10.1038/ng1194-221
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ng1196-269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018869487
183 https://doi.org/10.1038/ng1196-269
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng1196-285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019198906
186 https://doi.org/10.1038/ng1196-285
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng1827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006581093
189 https://doi.org/10.1038/ng1827
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nprot.2010.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999469
192 https://doi.org/10.1038/nprot.2010.5
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-9-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026371509
195 https://doi.org/10.1186/1471-2105-9-40
196 rdf:type schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1078189204 schema:CreativeWork
198 https://doi.org/10.1002/bip.360221211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206155
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/jcc.20084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008225564
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/prot.20264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027955415
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/prot.22540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030725232
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/prot.22589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043779662
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/b978-0-12-381270-4.00019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046182923
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.brainresrev.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008499188
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jmb.2009.08.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046422141
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.jmb.2012.01.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039173782
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.pneurobio.2011.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020400230
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.str.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022512875
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.str.2009.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047873150
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.tins.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015987010
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ymeth.2010.12.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003686973
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/jp1007768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056075489
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1021/jp305065c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056089932
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1021/jp306661c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056090710
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1042/bj20071619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004113002
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1080/07391102.2012.687526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004799533
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/bts600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052737562
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/brain/awh586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006329082
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/hmg/ddg295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011420568
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/nar/gki524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053671309
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/gkp403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050952869
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1097/00001756-200110290-00042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020752551
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1101/gr.849004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016890117
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/j.1432-1033.2004.04245.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018726840
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1146/annurev.neuro.23.1.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051773928
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1212/wnl.54.4.950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064378429
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pcbi.1000772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049446763
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pone.0023294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695920
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pone.0040536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004077892
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1529/biophysj.104.041533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012028584
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1529/biophysj.107.118935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012876684
267 rdf:type schema:CreativeWork
268 https://doi.org/10.4161/pri.23807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039719861
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
271 schema:name Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
272 Department of Neurology, University of Utah, Salt Lake City, Utah, USA
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...