Consistency of metagenomic assignment programs in simulated and real data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Koldo Garcia-Etxebarria, Marc Garcia-Garcerà, Francesc Calafell

ABSTRACT

BACKGROUND: Metagenomics is the genomic study of uncultured environmental samples, which has been greatly facilitated by the advent of shotgun-sequencing technologies. One of the main focuses of metagenomics is the discovery of previously uncultured microorganisms, which makes the assignment of sequences to a particular taxon a challenge and a crucial step. Recently, several methods have been developed to perform this task, based on different methodologies such as sequence composition or sequence similarity. The sequence composition methods have the ability to completely assign the whole dataset. However, their use in metagenomics and the study of their performance with real data is limited. In this work, we assess the consistency of three different methods (BLAST + Lowest Common Ancestor, Phymm, and Naïve Bayesian Classifier) in assigning real and simulated sequence reads. RESULTS: Both in real and in simulated data, BLAST + Lowest Common Ancestor (BLAST + LCA), Phymm, and Naïve Bayesian Classifier consistently assign a larger number of reads in higher taxonomic levels than in lower levels. However, discrepancies increase at lower taxonomic levels. In simulated data, consistent assignments between all three methods showed greater precision than assignments based on Phymm or Bayesian Classifier alone, since the BLAST + LCA algorithm performed best. In addition, assignment consistency in real data increased with sequence read length, in agreement with previously published simulation results. CONCLUSIONS: The use and combination of different approaches is advisable to assign metagenomic reads. Although the sensitivity could be reduced, the reliability can be increased by using the reads consistently assigned to the same taxa by, at least, two methods, and by training the programs using all available information. More... »

PAGES

90

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-90

DOI

http://dx.doi.org/10.1186/1471-2105-15-90

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012547854

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24678591


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred C57BL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pompeu Fabra University", 
          "id": "https://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Etxebarria", 
        "givenName": "Koldo", 
        "id": "sg:person.0673341741.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673341741.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pompeu Fabra University", 
          "id": "https://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Garcer\u00e0", 
        "givenName": "Marc", 
        "id": "sg:person.01234404241.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234404241.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pompeu Fabra University", 
          "id": "https://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calafell", 
        "givenName": "Francesc", 
        "id": "sg:person.01036367335.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036367335.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003696513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006083026", 
          "https://doi.org/10.1186/1471-2105-9-386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008886215", 
          "https://doi.org/10.1038/nmeth.1358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008886215", 
          "https://doi.org/10.1038/nmeth.1358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0074914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012010856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012074351", 
          "https://doi.org/10.1038/ismej.2010.162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1001129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012857897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017836407", 
          "https://doi.org/10.1186/1471-2105-12-328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018050596", 
          "https://doi.org/10.1186/1471-2105-13-92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018050596", 
          "https://doi.org/10.1186/1471-2105-13-92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019458419", 
          "https://doi.org/10.1186/1471-2105-12-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02181-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026780577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0017897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032868769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5969107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034259503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0003373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038713368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/495849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039358597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0017288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043584914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2011.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045808730", 
          "https://doi.org/10.1038/nprot.2011.369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047202519", 
          "https://doi.org/10.1038/nmeth1043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2011.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052974821", 
          "https://doi.org/10.1038/ismej.2011.85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1183605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1183605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461347"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Metagenomics is the genomic study of uncultured environmental samples, which has been greatly facilitated by the advent of shotgun-sequencing technologies. One of the main focuses of metagenomics is the discovery of previously uncultured microorganisms, which makes the assignment of sequences to a particular taxon a challenge and a crucial step. Recently, several methods have been developed to perform this task, based on different methodologies such as sequence composition or sequence similarity. The sequence composition methods have the ability to completely assign the whole dataset. However, their use in metagenomics and the study of their performance with real data is limited. In this work, we assess the consistency of three different methods (BLAST + Lowest Common Ancestor, Phymm, and Na\u00efve Bayesian Classifier) in assigning real and simulated sequence reads.\nRESULTS: Both in real and in simulated data, BLAST + Lowest Common Ancestor (BLAST + LCA), Phymm, and Na\u00efve Bayesian Classifier consistently assign a larger number of reads in higher taxonomic levels than in lower levels. However, discrepancies increase at lower taxonomic levels. In simulated data, consistent assignments between all three methods showed greater precision than assignments based on Phymm or Bayesian Classifier alone, since the BLAST + LCA algorithm performed best. In addition, assignment consistency in real data increased with sequence read length, in agreement with previously published simulation results.\nCONCLUSIONS: The use and combination of different approaches is advisable to assign metagenomic reads. Although the sensitivity could be reduced, the reliability can be increased by using the reads consistently assigned to the same taxa by, at least, two methods, and by training the programs using all available information.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-90", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Consistency of metagenomic assignment programs in simulated and real data", 
    "pagination": "90", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3bc7f5c4962c1230951d9092c0e49476e9dc3e0b2725f0eb61d1c0b12bb94910"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24678591"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-90"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012547854"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-90", 
      "https://app.dimensions.ai/details/publication/pub.1012547854"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-15-90"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-90'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-90'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-90'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-90'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      58 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-90 schema:about N04de8ac0b8e6460898b15f7b7ddba091
2 N0821c3b19eb642068c8b6c1416f3aff3
3 N0eed903e3c664d82b5be6d53e58c3ebf
4 N1093230b0cb54d67a2dfe0de486df7f0
5 N48fd1ad8af6f44138a7a3d257eedd6e1
6 N960e68eede434975b00a46241b0e9867
7 Nac7d731194ee423db0a3409e9416aa45
8 Ned51ca6197a64a1d936d20fa5a24c549
9 Nefe72db970d2416ebcdf3f99dfea875d
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N17574d85df4b4177abeb84fcb9740d34
13 schema:citation sg:pub.10.1038/ismej.2010.162
14 sg:pub.10.1038/ismej.2011.85
15 sg:pub.10.1038/nmeth.1358
16 sg:pub.10.1038/nmeth1043
17 sg:pub.10.1038/nprot.2011.369
18 sg:pub.10.1186/1471-2105-12-20
19 sg:pub.10.1186/1471-2105-12-328
20 sg:pub.10.1186/1471-2105-13-92
21 sg:pub.10.1186/1471-2105-9-386
22 https://doi.org/10.1093/nar/25.17.3389
23 https://doi.org/10.1101/gr.5969107
24 https://doi.org/10.1126/science.1183605
25 https://doi.org/10.1128/aem.02181-07
26 https://doi.org/10.1155/2011/495849
27 https://doi.org/10.1371/journal.pcbi.1000667
28 https://doi.org/10.1371/journal.pgen.1001129
29 https://doi.org/10.1371/journal.pone.0003373
30 https://doi.org/10.1371/journal.pone.0017288
31 https://doi.org/10.1371/journal.pone.0017897
32 https://doi.org/10.1371/journal.pone.0074914
33 schema:datePublished 2014-12
34 schema:datePublishedReg 2014-12-01
35 schema:description BACKGROUND: Metagenomics is the genomic study of uncultured environmental samples, which has been greatly facilitated by the advent of shotgun-sequencing technologies. One of the main focuses of metagenomics is the discovery of previously uncultured microorganisms, which makes the assignment of sequences to a particular taxon a challenge and a crucial step. Recently, several methods have been developed to perform this task, based on different methodologies such as sequence composition or sequence similarity. The sequence composition methods have the ability to completely assign the whole dataset. However, their use in metagenomics and the study of their performance with real data is limited. In this work, we assess the consistency of three different methods (BLAST + Lowest Common Ancestor, Phymm, and Naïve Bayesian Classifier) in assigning real and simulated sequence reads. RESULTS: Both in real and in simulated data, BLAST + Lowest Common Ancestor (BLAST + LCA), Phymm, and Naïve Bayesian Classifier consistently assign a larger number of reads in higher taxonomic levels than in lower levels. However, discrepancies increase at lower taxonomic levels. In simulated data, consistent assignments between all three methods showed greater precision than assignments based on Phymm or Bayesian Classifier alone, since the BLAST + LCA algorithm performed best. In addition, assignment consistency in real data increased with sequence read length, in agreement with previously published simulation results. CONCLUSIONS: The use and combination of different approaches is advisable to assign metagenomic reads. Although the sensitivity could be reduced, the reliability can be increased by using the reads consistently assigned to the same taxa by, at least, two methods, and by training the programs using all available information.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N9d594a8c4d7641bd8d417d521977b66e
40 Nb3620a5783c34337bedf45aa947a1deb
41 sg:journal.1023786
42 schema:name Consistency of metagenomic assignment programs in simulated and real data
43 schema:pagination 90
44 schema:productId N017c5a4254f64903bf3cb36ec47d2ed7
45 N501424e6ef8f44d0ab34ac3f1aa089ab
46 N5e3fd56511d948be8134788810bdc6cc
47 N6c8d759a165642ca90081d8cfd2b25ea
48 Ncdf91a8dfbc2417d8e302df69fe304af
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012547854
50 https://doi.org/10.1186/1471-2105-15-90
51 schema:sdDatePublished 2019-04-11T10:02
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nfb79a0c99e2c4bce9333271ccf9fe545
54 schema:url https://link.springer.com/10.1186%2F1471-2105-15-90
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N017c5a4254f64903bf3cb36ec47d2ed7 schema:name nlm_unique_id
59 schema:value 100965194
60 rdf:type schema:PropertyValue
61 N04de8ac0b8e6460898b15f7b7ddba091 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Skin
63 rdf:type schema:DefinedTerm
64 N0821c3b19eb642068c8b6c1416f3aff3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Genome
66 rdf:type schema:DefinedTerm
67 N0eed903e3c664d82b5be6d53e58c3ebf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Metagenomics
69 rdf:type schema:DefinedTerm
70 N1093230b0cb54d67a2dfe0de486df7f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Bayes Theorem
72 rdf:type schema:DefinedTerm
73 N17574d85df4b4177abeb84fcb9740d34 rdf:first sg:person.0673341741.15
74 rdf:rest N5f6d276af92540ce9d0423ec80a473ab
75 N48fd1ad8af6f44138a7a3d257eedd6e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Animals
77 rdf:type schema:DefinedTerm
78 N501424e6ef8f44d0ab34ac3f1aa089ab schema:name doi
79 schema:value 10.1186/1471-2105-15-90
80 rdf:type schema:PropertyValue
81 N5e3fd56511d948be8134788810bdc6cc schema:name dimensions_id
82 schema:value pub.1012547854
83 rdf:type schema:PropertyValue
84 N5f6d276af92540ce9d0423ec80a473ab rdf:first sg:person.01234404241.33
85 rdf:rest Ne362d952d3814fa2a989bab56b4ba02b
86 N6c8d759a165642ca90081d8cfd2b25ea schema:name pubmed_id
87 schema:value 24678591
88 rdf:type schema:PropertyValue
89 N960e68eede434975b00a46241b0e9867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Mice
91 rdf:type schema:DefinedTerm
92 N9d594a8c4d7641bd8d417d521977b66e schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Nac7d731194ee423db0a3409e9416aa45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Mice, Inbred C57BL
96 rdf:type schema:DefinedTerm
97 Nb3620a5783c34337bedf45aa947a1deb schema:volumeNumber 15
98 rdf:type schema:PublicationVolume
99 Ncdf91a8dfbc2417d8e302df69fe304af schema:name readcube_id
100 schema:value 3bc7f5c4962c1230951d9092c0e49476e9dc3e0b2725f0eb61d1c0b12bb94910
101 rdf:type schema:PropertyValue
102 Ne362d952d3814fa2a989bab56b4ba02b rdf:first sg:person.01036367335.40
103 rdf:rest rdf:nil
104 Ned51ca6197a64a1d936d20fa5a24c549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Algorithms
106 rdf:type schema:DefinedTerm
107 Nefe72db970d2416ebcdf3f99dfea875d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Reproducibility of Results
109 rdf:type schema:DefinedTerm
110 Nfb79a0c99e2c4bce9333271ccf9fe545 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
113 schema:name Biological Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
116 schema:name Genetics
117 rdf:type schema:DefinedTerm
118 sg:journal.1023786 schema:issn 1471-2105
119 schema:name BMC Bioinformatics
120 rdf:type schema:Periodical
121 sg:person.01036367335.40 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
122 schema:familyName Calafell
123 schema:givenName Francesc
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036367335.40
125 rdf:type schema:Person
126 sg:person.01234404241.33 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
127 schema:familyName Garcia-Garcerà
128 schema:givenName Marc
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234404241.33
130 rdf:type schema:Person
131 sg:person.0673341741.15 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
132 schema:familyName Garcia-Etxebarria
133 schema:givenName Koldo
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673341741.15
135 rdf:type schema:Person
136 sg:pub.10.1038/ismej.2010.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012074351
137 https://doi.org/10.1038/ismej.2010.162
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/ismej.2011.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052974821
140 https://doi.org/10.1038/ismej.2011.85
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nmeth.1358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008886215
143 https://doi.org/10.1038/nmeth.1358
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nmeth1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047202519
146 https://doi.org/10.1038/nmeth1043
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nprot.2011.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045808730
149 https://doi.org/10.1038/nprot.2011.369
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/1471-2105-12-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019458419
152 https://doi.org/10.1186/1471-2105-12-20
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-12-328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017836407
155 https://doi.org/10.1186/1471-2105-12-328
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2105-13-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018050596
158 https://doi.org/10.1186/1471-2105-13-92
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-9-386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006083026
161 https://doi.org/10.1186/1471-2105-9-386
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1101/gr.5969107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259503
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.1183605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461347
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1128/aem.02181-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026780577
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1155/2011/495849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039358597
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pcbi.1000667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003696513
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pgen.1001129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012857897
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pone.0003373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038713368
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1371/journal.pone.0017288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043584914
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1371/journal.pone.0017897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032868769
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1371/journal.pone.0074914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012010856
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.5612.0 schema:alternateName Pompeu Fabra University
186 schema:name Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...