TSSAR: TSS annotation regime for dRNA-seq data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Fabian Amman, Michael T Wolfinger, Ronny Lorenz, Ivo L Hofacker, Peter F Stadler, Sven Findeiß

ABSTRACT

BACKGROUND: Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. RESULTS: Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. CONCLUSIONS: Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines. More... »

PAGES

89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-89

DOI

http://dx.doi.org/10.1186/1471-2105-15-89

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051175659

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24674136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Helicobacter pylori", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stenotrophomonas maltophilia", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, H\u00e4rtelstra\u00dfe 16\u201318, 04107, Leipzig, Germany", 
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amman", 
        "givenName": "Fabian", 
        "id": "sg:person.01020151132.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020151132.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria", 
            "Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolfinger", 
        "givenName": "Michael T", 
        "id": "sg:person.01157077233.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157077233.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorenz", 
        "givenName": "Ronny", 
        "id": "sg:person.01365054532.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365054532.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Center for RNA in Technology and Health, University of Copenhagen, Gr\u00f8nneg\u00e5rdsvej 3, Frederiksberg C, Denmark", 
            "Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, W\u00e4hringerstra\u00dfe 29, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofacker", 
        "givenName": "Ivo L", 
        "id": "sg:person.01222322364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, H\u00e4rtelstra\u00dfe 16\u201318, 04107, Leipzig, Germany", 
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Center for RNA in Technology and Health, University of Copenhagen, Gr\u00f8nneg\u00e5rdsvej 3, Frederiksberg C, Denmark", 
            "Max Planck Institute for Mathematics in the Sciences, Inselstra\u00dfe 22, D-04103, Leipzig, Germany", 
            "Fraunhofer Institute for Cell Therapy and Immunology, Perlickstra\u00dfe 1, D-04103, Leipzig, Germany", 
            "Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa Fe NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, W\u00e4hringerstra\u00dfe 29, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Findei\u00df", 
        "givenName": "Sven", 
        "id": "sg:person.01150037223.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150037223.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000952529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00746-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001018563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.100396.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002213062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1015154108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004989304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.3.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007271532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/sagmb-2012-0049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009629345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012715235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013692474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00122-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014116239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1112724108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018265238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026790846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026972767", 
          "https://doi.org/10.1038/nbt.1582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026972767", 
          "https://doi.org/10.1038/nbt.1582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029562564", 
          "https://doi.org/10.1186/1471-2164-13-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11941439_114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029882443", 
          "https://doi.org/10.1007/11941439_114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11941439_114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029882443", 
          "https://doi.org/10.1007/11941439_114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2008.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030473990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031440388", 
          "https://doi.org/10.1186/1471-2164-14-156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-010-0538-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032859022", 
          "https://doi.org/10.1007/s00018-010-0538-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034194664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-3-r23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036305770", 
          "https://doi.org/10.1186/gb-2012-13-3-r23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036892131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bc.2011.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038887658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2010.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039123716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039501927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050182699", 
          "https://doi.org/10.1038/nature08756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050182699", 
          "https://doi.org/10.1038/nature08756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052096621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053422907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053422907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1966.10482204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v032.i10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1269547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069421209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2981372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078077480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2397-2335.1946.tb04670.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078077480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424111", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased.\nRESULTS: Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches.\nCONCLUSIONS: Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-89", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580451", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "TSSAR: TSS annotation regime for dRNA-seq data", 
    "pagination": "89", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3c813547525347c684685b5fbc564220026ac8856090b3c298e9ee018249586"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24674136"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-89"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051175659"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-89", 
      "https://app.dimensions.ai/details/publication/pub.1051175659"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-15-89"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      71 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-89 schema:about N37f1e390a67a4b7cb781d04a292e0aeb
2 N44731ee2274a473b9e084ddf05089dfc
3 N5a34138d50f4475e9cc3b17dfb8744e8
4 N98e839c9ce754b9388decd8f3d867db1
5 Na8cd644e40e0417b9048c856cef36b8d
6 Nb7fb5f0d6bee480b951451070a88390f
7 Nbe6b9887bcdb4f6fb2d5fae81f6c5e1e
8 Nc2a44c24142e437aab61363a886c8820
9 Nc5a3de4c855d4243803fd1bdba53d433
10 Ndf5f6ff754224e92b67a0ea273793003
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N861f4dbd347344d6a7256c7c7bce9022
14 schema:citation sg:pub.10.1007/11941439_114
15 sg:pub.10.1007/s00018-010-0538-9
16 sg:pub.10.1038/nature08756
17 sg:pub.10.1038/nbt.1582
18 sg:pub.10.1186/1471-2164-13-25
19 sg:pub.10.1186/1471-2164-14-156
20 sg:pub.10.1186/gb-2012-13-3-r23
21 https://app.dimensions.ai/details/publication/pub.1082424111
22 https://doi.org/10.1016/j.mib.2010.09.009
23 https://doi.org/10.1016/j.sbi.2008.05.003
24 https://doi.org/10.1038/msb.2012.11
25 https://doi.org/10.1073/pnas.1015154108
26 https://doi.org/10.1073/pnas.1112724108
27 https://doi.org/10.1073/pnas.72.3.784
28 https://doi.org/10.1080/01621459.1966.10482204
29 https://doi.org/10.1093/bioinformatics/btq033
30 https://doi.org/10.1093/bioinformatics/btr064
31 https://doi.org/10.1093/nar/gkr1184
32 https://doi.org/10.1093/nar/gkr904
33 https://doi.org/10.1093/nar/gks666
34 https://doi.org/10.1101/gr.100396.109
35 https://doi.org/10.1111/j.2397-2335.1946.tb04670.x
36 https://doi.org/10.1126/science.1206848
37 https://doi.org/10.1128/jb.00122-09
38 https://doi.org/10.1128/jb.00746-12
39 https://doi.org/10.1371/journal.pcbi.1000502
40 https://doi.org/10.1371/journal.pgen.1003495
41 https://doi.org/10.1515/bc.2011.043
42 https://doi.org/10.1515/sagmb-2012-0049
43 https://doi.org/10.18637/jss.v032.i10
44 https://doi.org/10.2307/1269547
45 https://doi.org/10.2307/2981372
46 schema:datePublished 2014-12
47 schema:datePublishedReg 2014-12-01
48 schema:description BACKGROUND: Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. RESULTS: Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. CONCLUSIONS: Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N68fd31956b58455c895ec6203b7135e9
53 Na282915acf5d4cbeb76a7c581999e5a1
54 sg:journal.1023786
55 schema:name TSSAR: TSS annotation regime for dRNA-seq data
56 schema:pagination 89
57 schema:productId N25fe72b24a564e3ebd4bc2651f18b82a
58 N7c327b9a62d84e528fcd899b3467ef8e
59 N80ea10ec351d4247b5a18105a0fd286f
60 Ncfb1508b18d74892b5218cd282a4a7df
61 Nfe4efbd0c6b14c5a8f9ead3d6230a6e5
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051175659
63 https://doi.org/10.1186/1471-2105-15-89
64 schema:sdDatePublished 2019-04-10T19:15
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N60678a78c5c84b23885c22893e931daf
67 schema:url http://link.springer.com/10.1186%2F1471-2105-15-89
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N25a300b1cd9c42ab8af764dd391aab95 rdf:first sg:person.01222322364.52
72 rdf:rest N9f1d4fce2284474ab8ed21d96b0b3bd4
73 N25fe72b24a564e3ebd4bc2651f18b82a schema:name dimensions_id
74 schema:value pub.1051175659
75 rdf:type schema:PropertyValue
76 N37f1e390a67a4b7cb781d04a292e0aeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Sequence Analysis, RNA
78 rdf:type schema:DefinedTerm
79 N44731ee2274a473b9e084ddf05089dfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Stenotrophomonas maltophilia
81 rdf:type schema:DefinedTerm
82 N4d6574e18ef24d9c9cfe69bcec53079d rdf:first sg:person.01157077233.78
83 rdf:rest Nd9ba964998904c35afb4b6f4f9005a91
84 N5249188571a04a9d84595f4cda026797 rdf:first sg:person.01150037223.07
85 rdf:rest rdf:nil
86 N5a34138d50f4475e9cc3b17dfb8744e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Software
88 rdf:type schema:DefinedTerm
89 N60678a78c5c84b23885c22893e931daf schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N68fd31956b58455c895ec6203b7135e9 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N7c327b9a62d84e528fcd899b3467ef8e schema:name readcube_id
94 schema:value f3c813547525347c684685b5fbc564220026ac8856090b3c298e9ee018249586
95 rdf:type schema:PropertyValue
96 N80ea10ec351d4247b5a18105a0fd286f schema:name pubmed_id
97 schema:value 24674136
98 rdf:type schema:PropertyValue
99 N861f4dbd347344d6a7256c7c7bce9022 rdf:first sg:person.01020151132.84
100 rdf:rest N4d6574e18ef24d9c9cfe69bcec53079d
101 N98e839c9ce754b9388decd8f3d867db1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Databases, Nucleic Acid
103 rdf:type schema:DefinedTerm
104 N9f1d4fce2284474ab8ed21d96b0b3bd4 rdf:first sg:person.0664150133.70
105 rdf:rest N5249188571a04a9d84595f4cda026797
106 Na282915acf5d4cbeb76a7c581999e5a1 schema:volumeNumber 15
107 rdf:type schema:PublicationVolume
108 Na8cd644e40e0417b9048c856cef36b8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Genome
110 rdf:type schema:DefinedTerm
111 Nb7fb5f0d6bee480b951451070a88390f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Genomics
113 rdf:type schema:DefinedTerm
114 Nbe6b9887bcdb4f6fb2d5fae81f6c5e1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Base Sequence
116 rdf:type schema:DefinedTerm
117 Nc2a44c24142e437aab61363a886c8820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 Nc5a3de4c855d4243803fd1bdba53d433 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Helicobacter pylori
122 rdf:type schema:DefinedTerm
123 Ncfb1508b18d74892b5218cd282a4a7df schema:name doi
124 schema:value 10.1186/1471-2105-15-89
125 rdf:type schema:PropertyValue
126 Nd9ba964998904c35afb4b6f4f9005a91 rdf:first sg:person.01365054532.26
127 rdf:rest N25a300b1cd9c42ab8af764dd391aab95
128 Ndf5f6ff754224e92b67a0ea273793003 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name High-Throughput Nucleotide Sequencing
130 rdf:type schema:DefinedTerm
131 Nfe4efbd0c6b14c5a8f9ead3d6230a6e5 schema:name nlm_unique_id
132 schema:value 100965194
133 rdf:type schema:PropertyValue
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
138 schema:name Genetics
139 rdf:type schema:DefinedTerm
140 sg:grant.7580451 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-15-89
141 rdf:type schema:MonetaryGrant
142 sg:journal.1023786 schema:issn 1471-2105
143 schema:name BMC Bioinformatics
144 rdf:type schema:Periodical
145 sg:person.01020151132.84 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
146 schema:familyName Amman
147 schema:givenName Fabian
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020151132.84
149 rdf:type schema:Person
150 sg:person.01150037223.07 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
151 schema:familyName Findeiß
152 schema:givenName Sven
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150037223.07
154 rdf:type schema:Person
155 sg:person.01157077233.78 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
156 schema:familyName Wolfinger
157 schema:givenName Michael T
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157077233.78
159 rdf:type schema:Person
160 sg:person.01222322364.52 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
161 schema:familyName Hofacker
162 schema:givenName Ivo L
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
164 rdf:type schema:Person
165 sg:person.01365054532.26 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
166 schema:familyName Lorenz
167 schema:givenName Ronny
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365054532.26
169 rdf:type schema:Person
170 sg:person.0664150133.70 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
171 schema:familyName Stadler
172 schema:givenName Peter F
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
174 rdf:type schema:Person
175 sg:pub.10.1007/11941439_114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029882443
176 https://doi.org/10.1007/11941439_114
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00018-010-0538-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032859022
179 https://doi.org/10.1007/s00018-010-0538-9
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature08756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050182699
182 https://doi.org/10.1038/nature08756
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nbt.1582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026972767
185 https://doi.org/10.1038/nbt.1582
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1471-2164-13-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029562564
188 https://doi.org/10.1186/1471-2164-13-25
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2164-14-156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031440388
191 https://doi.org/10.1186/1471-2164-14-156
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/gb-2012-13-3-r23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036305770
194 https://doi.org/10.1186/gb-2012-13-3-r23
195 rdf:type schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1082424111 schema:CreativeWork
197 https://doi.org/10.1016/j.mib.2010.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039123716
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.sbi.2008.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030473990
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1038/msb.2012.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053422907
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.1015154108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004989304
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.1112724108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018265238
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.72.3.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007271532
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1080/01621459.1966.10482204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300094
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btq033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036892131
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btr064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034194664
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gkr1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052096621
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gkr904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013692474
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gks666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039501927
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1101/gr.100396.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002213062
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/j.2397-2335.1946.tb04670.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1078077480
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.1206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012715235
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1128/jb.00122-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014116239
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1128/jb.00746-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001018563
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pcbi.1000502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026790846
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pgen.1003495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000952529
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1515/bc.2011.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038887658
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1515/sagmb-2012-0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629345
238 rdf:type schema:CreativeWork
239 https://doi.org/10.18637/jss.v032.i10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672488
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2307/1269547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069421209
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2307/2981372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078077480
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
246 schema:name Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, Härtelstraße 16–18, 04107, Leipzig, Germany
247 Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
248 Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
249 Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
250 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090, Vienna, Austria
251 Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Währingerstraße 29, 1090, Vienna, Austria
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.209665.e schema:alternateName Santa Fe Institute
254 schema:name Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, Härtelstraße 16–18, 04107, Leipzig, Germany
255 Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
256 Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103, Leipzig, Germany
257 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090, Vienna, Austria
258 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103, Leipzig, Germany
259 Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa Fe NM, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...