TSSAR: TSS annotation regime for dRNA-seq data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Fabian Amman, Michael T Wolfinger, Ronny Lorenz, Ivo L Hofacker, Peter F Stadler, Sven Findeiß

ABSTRACT

BACKGROUND: Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. RESULTS: Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. CONCLUSIONS: Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines. More... »

PAGES

89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-89

DOI

http://dx.doi.org/10.1186/1471-2105-15-89

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051175659

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24674136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Helicobacter pylori", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stenotrophomonas maltophilia", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, H\u00e4rtelstra\u00dfe 16\u201318, 04107, Leipzig, Germany", 
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amman", 
        "givenName": "Fabian", 
        "id": "sg:person.01020151132.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020151132.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria", 
            "Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolfinger", 
        "givenName": "Michael T", 
        "id": "sg:person.01157077233.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157077233.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorenz", 
        "givenName": "Ronny", 
        "id": "sg:person.01365054532.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365054532.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Center for RNA in Technology and Health, University of Copenhagen, Gr\u00f8nneg\u00e5rdsvej 3, Frederiksberg C, Denmark", 
            "Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, W\u00e4hringerstra\u00dfe 29, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofacker", 
        "givenName": "Ivo L", 
        "id": "sg:person.01222322364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, H\u00e4rtelstra\u00dfe 16\u201318, 04107, Leipzig, Germany", 
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Center for RNA in Technology and Health, University of Copenhagen, Gr\u00f8nneg\u00e5rdsvej 3, Frederiksberg C, Denmark", 
            "Max Planck Institute for Mathematics in the Sciences, Inselstra\u00dfe 22, D-04103, Leipzig, Germany", 
            "Fraunhofer Institute for Cell Therapy and Immunology, Perlickstra\u00dfe 1, D-04103, Leipzig, Germany", 
            "Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa Fe NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Theoretical Chemistry, University of Vienna, W\u00e4hringerstra\u00dfe 17, 1090, Vienna, Austria", 
            "Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, W\u00e4hringerstra\u00dfe 29, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Findei\u00df", 
        "givenName": "Sven", 
        "id": "sg:person.01150037223.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150037223.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000952529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00746-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001018563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.100396.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002213062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1015154108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004989304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.3.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007271532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/sagmb-2012-0049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009629345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012715235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013692474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00122-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014116239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1112724108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018265238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026790846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026972767", 
          "https://doi.org/10.1038/nbt.1582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026972767", 
          "https://doi.org/10.1038/nbt.1582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029562564", 
          "https://doi.org/10.1186/1471-2164-13-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11941439_114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029882443", 
          "https://doi.org/10.1007/11941439_114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11941439_114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029882443", 
          "https://doi.org/10.1007/11941439_114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2008.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030473990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031440388", 
          "https://doi.org/10.1186/1471-2164-14-156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-010-0538-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032859022", 
          "https://doi.org/10.1007/s00018-010-0538-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034194664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-3-r23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036305770", 
          "https://doi.org/10.1186/gb-2012-13-3-r23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036892131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bc.2011.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038887658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2010.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039123716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039501927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050182699", 
          "https://doi.org/10.1038/nature08756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050182699", 
          "https://doi.org/10.1038/nature08756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052096621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053422907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053422907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1966.10482204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v032.i10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1269547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069421209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2981372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078077480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2397-2335.1946.tb04670.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078077480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424111", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased.\nRESULTS: Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches.\nCONCLUSIONS: Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-89", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580451", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "TSSAR: TSS annotation regime for dRNA-seq data", 
    "pagination": "89", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3c813547525347c684685b5fbc564220026ac8856090b3c298e9ee018249586"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24674136"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-89"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051175659"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-89", 
      "https://app.dimensions.ai/details/publication/pub.1051175659"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-15-89"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-89'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      71 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-89 schema:about N0fd0c27f1acc4e7ba34c867fa7483915
2 N33ad9a33e077488f8ef6b497da7a9dea
3 N41ceade5bab44413ad3c9c3c72590684
4 N753198b451514feea67d93cbe309eaa5
5 N7d5cc8c0d103450d89579c0434d326c0
6 Na12ec5e354a64e06bd1cc10be61d8770
7 Ne1233aadba904c3c8422dbb209d72d82
8 Ne589101d862644d08cdddcee3f9857b0
9 Nf02c5554ca8b4465b6d9324c602c8bde
10 Nf30bdf638ba841c9aa0c11b6f11fe89e
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nd2ab02d7a0da4260a079371db0c3a2d3
14 schema:citation sg:pub.10.1007/11941439_114
15 sg:pub.10.1007/s00018-010-0538-9
16 sg:pub.10.1038/nature08756
17 sg:pub.10.1038/nbt.1582
18 sg:pub.10.1186/1471-2164-13-25
19 sg:pub.10.1186/1471-2164-14-156
20 sg:pub.10.1186/gb-2012-13-3-r23
21 https://app.dimensions.ai/details/publication/pub.1082424111
22 https://doi.org/10.1016/j.mib.2010.09.009
23 https://doi.org/10.1016/j.sbi.2008.05.003
24 https://doi.org/10.1038/msb.2012.11
25 https://doi.org/10.1073/pnas.1015154108
26 https://doi.org/10.1073/pnas.1112724108
27 https://doi.org/10.1073/pnas.72.3.784
28 https://doi.org/10.1080/01621459.1966.10482204
29 https://doi.org/10.1093/bioinformatics/btq033
30 https://doi.org/10.1093/bioinformatics/btr064
31 https://doi.org/10.1093/nar/gkr1184
32 https://doi.org/10.1093/nar/gkr904
33 https://doi.org/10.1093/nar/gks666
34 https://doi.org/10.1101/gr.100396.109
35 https://doi.org/10.1111/j.2397-2335.1946.tb04670.x
36 https://doi.org/10.1126/science.1206848
37 https://doi.org/10.1128/jb.00122-09
38 https://doi.org/10.1128/jb.00746-12
39 https://doi.org/10.1371/journal.pcbi.1000502
40 https://doi.org/10.1371/journal.pgen.1003495
41 https://doi.org/10.1515/bc.2011.043
42 https://doi.org/10.1515/sagmb-2012-0049
43 https://doi.org/10.18637/jss.v032.i10
44 https://doi.org/10.2307/1269547
45 https://doi.org/10.2307/2981372
46 schema:datePublished 2014-12
47 schema:datePublishedReg 2014-12-01
48 schema:description BACKGROUND: Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. RESULTS: Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. CONCLUSIONS: Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N419b77b745db4e1cb58dbfaf84b133ba
53 N8bebefd40b2b4bfeb260b05603f7c049
54 sg:journal.1023786
55 schema:name TSSAR: TSS annotation regime for dRNA-seq data
56 schema:pagination 89
57 schema:productId N0385017250594509acc157a89343b71d
58 N998f83ebfe004fb7bc19b14797eaed95
59 Nbdeda195f43e4416ae30a00552f52e97
60 Nf6f39a7510c949888b1897633ca1f4d3
61 Nf98520eedfb6475a85e7ea4a08d2f677
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051175659
63 https://doi.org/10.1186/1471-2105-15-89
64 schema:sdDatePublished 2019-04-10T19:15
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N7f676f18e79e4bb0a0d0db8a8f11c701
67 schema:url http://link.springer.com/10.1186%2F1471-2105-15-89
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0385017250594509acc157a89343b71d schema:name readcube_id
72 schema:value f3c813547525347c684685b5fbc564220026ac8856090b3c298e9ee018249586
73 rdf:type schema:PropertyValue
74 N0fd0c27f1acc4e7ba34c867fa7483915 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Base Sequence
76 rdf:type schema:DefinedTerm
77 N33ad9a33e077488f8ef6b497da7a9dea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Genome
79 rdf:type schema:DefinedTerm
80 N419b77b745db4e1cb58dbfaf84b133ba schema:volumeNumber 15
81 rdf:type schema:PublicationVolume
82 N41ceade5bab44413ad3c9c3c72590684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Stenotrophomonas maltophilia
84 rdf:type schema:DefinedTerm
85 N67a536de8bbd41248842710bc72731eb rdf:first sg:person.01222322364.52
86 rdf:rest Na1738c9b434048ce877962b6b1068413
87 N6dd892589e80467784aeca15c0a55767 rdf:first sg:person.01365054532.26
88 rdf:rest N67a536de8bbd41248842710bc72731eb
89 N753198b451514feea67d93cbe309eaa5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Software
91 rdf:type schema:DefinedTerm
92 N7d5cc8c0d103450d89579c0434d326c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Databases, Nucleic Acid
94 rdf:type schema:DefinedTerm
95 N7f676f18e79e4bb0a0d0db8a8f11c701 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N8bebefd40b2b4bfeb260b05603f7c049 schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N998f83ebfe004fb7bc19b14797eaed95 schema:name dimensions_id
100 schema:value pub.1051175659
101 rdf:type schema:PropertyValue
102 Na12ec5e354a64e06bd1cc10be61d8770 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Genomics
104 rdf:type schema:DefinedTerm
105 Na1738c9b434048ce877962b6b1068413 rdf:first sg:person.0664150133.70
106 rdf:rest Nf80b25509c174e86a255fc8d08258b46
107 Nbdeda195f43e4416ae30a00552f52e97 schema:name pubmed_id
108 schema:value 24674136
109 rdf:type schema:PropertyValue
110 Nd21731e5345f4cb88498dd9ec803a832 rdf:first sg:person.01157077233.78
111 rdf:rest N6dd892589e80467784aeca15c0a55767
112 Nd2ab02d7a0da4260a079371db0c3a2d3 rdf:first sg:person.01020151132.84
113 rdf:rest Nd21731e5345f4cb88498dd9ec803a832
114 Ne1233aadba904c3c8422dbb209d72d82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Helicobacter pylori
116 rdf:type schema:DefinedTerm
117 Ne589101d862644d08cdddcee3f9857b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 Nf02c5554ca8b4465b6d9324c602c8bde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name High-Throughput Nucleotide Sequencing
122 rdf:type schema:DefinedTerm
123 Nf30bdf638ba841c9aa0c11b6f11fe89e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Sequence Analysis, RNA
125 rdf:type schema:DefinedTerm
126 Nf6f39a7510c949888b1897633ca1f4d3 schema:name doi
127 schema:value 10.1186/1471-2105-15-89
128 rdf:type schema:PropertyValue
129 Nf80b25509c174e86a255fc8d08258b46 rdf:first sg:person.01150037223.07
130 rdf:rest rdf:nil
131 Nf98520eedfb6475a85e7ea4a08d2f677 schema:name nlm_unique_id
132 schema:value 100965194
133 rdf:type schema:PropertyValue
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
138 schema:name Genetics
139 rdf:type schema:DefinedTerm
140 sg:grant.7580451 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-15-89
141 rdf:type schema:MonetaryGrant
142 sg:journal.1023786 schema:issn 1471-2105
143 schema:name BMC Bioinformatics
144 rdf:type schema:Periodical
145 sg:person.01020151132.84 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
146 schema:familyName Amman
147 schema:givenName Fabian
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020151132.84
149 rdf:type schema:Person
150 sg:person.01150037223.07 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
151 schema:familyName Findeiß
152 schema:givenName Sven
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150037223.07
154 rdf:type schema:Person
155 sg:person.01157077233.78 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
156 schema:familyName Wolfinger
157 schema:givenName Michael T
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157077233.78
159 rdf:type schema:Person
160 sg:person.01222322364.52 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
161 schema:familyName Hofacker
162 schema:givenName Ivo L
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
164 rdf:type schema:Person
165 sg:person.01365054532.26 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
166 schema:familyName Lorenz
167 schema:givenName Ronny
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365054532.26
169 rdf:type schema:Person
170 sg:person.0664150133.70 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
171 schema:familyName Stadler
172 schema:givenName Peter F
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
174 rdf:type schema:Person
175 sg:pub.10.1007/11941439_114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029882443
176 https://doi.org/10.1007/11941439_114
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00018-010-0538-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032859022
179 https://doi.org/10.1007/s00018-010-0538-9
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature08756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050182699
182 https://doi.org/10.1038/nature08756
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nbt.1582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026972767
185 https://doi.org/10.1038/nbt.1582
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1471-2164-13-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029562564
188 https://doi.org/10.1186/1471-2164-13-25
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2164-14-156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031440388
191 https://doi.org/10.1186/1471-2164-14-156
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/gb-2012-13-3-r23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036305770
194 https://doi.org/10.1186/gb-2012-13-3-r23
195 rdf:type schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1082424111 schema:CreativeWork
197 https://doi.org/10.1016/j.mib.2010.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039123716
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.sbi.2008.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030473990
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1038/msb.2012.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053422907
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.1015154108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004989304
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.1112724108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018265238
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.72.3.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007271532
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1080/01621459.1966.10482204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300094
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btq033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036892131
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btr064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034194664
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gkr1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052096621
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gkr904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013692474
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gks666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039501927
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1101/gr.100396.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002213062
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/j.2397-2335.1946.tb04670.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1078077480
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.1206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012715235
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1128/jb.00122-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014116239
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1128/jb.00746-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001018563
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pcbi.1000502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026790846
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pgen.1003495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000952529
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1515/bc.2011.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038887658
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1515/sagmb-2012-0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629345
238 rdf:type schema:CreativeWork
239 https://doi.org/10.18637/jss.v032.i10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672488
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2307/1269547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069421209
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2307/2981372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078077480
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
246 schema:name Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, Härtelstraße 16–18, 04107, Leipzig, Germany
247 Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
248 Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
249 Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
250 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090, Vienna, Austria
251 Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Währingerstraße 29, 1090, Vienna, Austria
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.209665.e schema:alternateName Santa Fe Institute
254 schema:name Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, Härtelstraße 16–18, 04107, Leipzig, Germany
255 Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
256 Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103, Leipzig, Germany
257 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090, Vienna, Austria
258 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103, Leipzig, Germany
259 Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa Fe NM, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...