Efficient design of meganucleases using a machine learning approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Mikhail Zaslavskiy, Claudia Bertonati, Philippe Duchateau, Aymeric Duclert, George H Silva

ABSTRACT

BACKGROUND: Meganucleases are important tools for genome engineering, providing an efficient way to generate DNA double-strand breaks at specific loci of interest. Numerous experimental efforts, ranging from in vivo selection to in silico modeling, have been made to re-engineer meganucleases to target relevant DNA sequences. RESULTS: Here we present a novel in silico method for designing custom meganucleases that is based on the use of a machine learning approach. We compared it with existing in silico physical models and high-throughput experimental screening. The machine learning model was used to successfully predict active meganucleases for 53 new DNA targets. CONCLUSIONS: This new method shows competitive performance compared with state-of-the-art in silico physical models, with up to a fourfold increase in terms of the design success rate. Compared to experimental high-throughput screening methods, it reduces the number of screening experiments needed by a factor of more than 100 without affecting final performance. More... »

PAGES

191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-191

DOI

http://dx.doi.org/10.1186/1471-2105-15-191

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028077547

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24934562


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Screening Assays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Takara (France)", 
          "id": "https://www.grid.ac/institutes/grid.433267.7", 
          "name": [
            "Research and Development department, Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaslavskiy", 
        "givenName": "Mikhail", 
        "id": "sg:person.0701631465.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701631465.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Takara (France)", 
          "id": "https://www.grid.ac/institutes/grid.433267.7", 
          "name": [
            "Research and Development department, Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertonati", 
        "givenName": "Claudia", 
        "id": "sg:person.01225455451.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225455451.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Takara (France)", 
          "id": "https://www.grid.ac/institutes/grid.433267.7", 
          "name": [
            "Research and Development department, Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duchateau", 
        "givenName": "Philippe", 
        "id": "sg:person.01114761262.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114761262.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Takara (France)", 
          "id": "https://www.grid.ac/institutes/grid.433267.7", 
          "name": [
            "Research and Development department, Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duclert", 
        "givenName": "Aymeric", 
        "id": "sg:person.01324352465.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324352465.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Takara (France)", 
          "id": "https://www.grid.ac/institutes/grid.433267.7", 
          "name": [
            "Research and Development department, Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "George H", 
        "id": "sg:person.01032340033.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032340033.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkq283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001978024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003604257", 
          "https://doi.org/10.1186/1471-2105-7-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003604257", 
          "https://doi.org/10.1186/1471-2105-7-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003884687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01364-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004669081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01364-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004669081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00447-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005618641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00447-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005618641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008705788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012352710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(01)00065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012543995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012705120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012756616", 
          "https://doi.org/10.1038/nature04818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012756616", 
          "https://doi.org/10.1038/nature04818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012756616", 
          "https://doi.org/10.1038/nature04818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014225506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014507230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1178811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014803320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1178811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014803320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016134561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018933772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018939216", 
          "https://doi.org/10.1038/nrg2842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018939216", 
          "https://doi.org/10.1038/nrg2842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019888616", 
          "https://doi.org/10.1038/nbt.2508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-5564(03)00096-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021927064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-5564(03)00096-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021927064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1232033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022072971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/86181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025743200", 
          "https://doi.org/10.1038/86181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80134-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.10.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.10.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032715859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034593423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034947500", 
          "https://doi.org/10.1038/nature07845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034947500", 
          "https://doi.org/10.1038/nature07845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0707-743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035984058", 
          "https://doi.org/10.1038/nbt0707-743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2006.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036936680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038920901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2008.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039007980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp1171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041612079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043169438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/gzq083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046099390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/gzq083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046099390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156652311794520111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046423203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046630493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046669585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048921070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767307035623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050425330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050590164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-s1-s7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051833905", 
          "https://doi.org/10.1186/1471-2105-7-s1-s7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583505004063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054006523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci025620t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci025620t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja057519l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055840788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja057519l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055840788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Meganucleases are important tools for genome engineering, providing an efficient way to generate DNA double-strand breaks at specific loci of interest. Numerous experimental efforts, ranging from in vivo selection to in silico modeling, have been made to re-engineer meganucleases to target relevant DNA sequences.\nRESULTS: Here we present a novel in silico method for designing custom meganucleases that is based on the use of a machine learning approach. We compared it with existing in silico physical models and high-throughput experimental screening. The machine learning model was used to successfully predict active meganucleases for 53 new DNA targets.\nCONCLUSIONS: This new method shows competitive performance compared with state-of-the-art in silico physical models, with up to a fourfold increase in terms of the design success rate. Compared to experimental high-throughput screening methods, it reduces the number of screening experiments needed by a factor of more than 100 without affecting final performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-191", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Efficient design of meganucleases using a machine learning approach", 
    "pagination": "191", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85c0ddf3546aa15f786479d573df95d20ef3d40837ac0942c57b612469acef60"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24934562"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-191"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028077547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-191", 
      "https://app.dimensions.ai/details/publication/pub.1028077547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-15-191"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-191'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-191'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-191'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-191'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      78 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-191 schema:about N2dec8e78e9514dbf94481769ec3752c0
2 N3b3f6136d829401fb623c3aa96fc2ba2
3 N8038398a71e44fa5b84d36942a795100
4 Nbab47c977806491e9e914498e25d8ebb
5 Nc1ecd1c5bde243cf8d499b2a320462ae
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N0a91dd61624a460b86b7f2142afdd42b
9 schema:citation sg:pub.10.1038/86181
10 sg:pub.10.1038/nature04818
11 sg:pub.10.1038/nature07845
12 sg:pub.10.1038/nbt.2508
13 sg:pub.10.1038/nbt0707-743
14 sg:pub.10.1038/nrg2842
15 sg:pub.10.1186/1471-2105-7-7
16 sg:pub.10.1186/1471-2105-7-s1-s7
17 https://doi.org/10.1016/j.copbio.2006.02.002
18 https://doi.org/10.1016/j.copbio.2008.10.014
19 https://doi.org/10.1016/j.jmb.2004.07.031
20 https://doi.org/10.1016/j.jmb.2005.10.065
21 https://doi.org/10.1016/j.patrec.2005.10.010
22 https://doi.org/10.1016/s0022-2836(02)01364-5
23 https://doi.org/10.1016/s0022-2836(03)00447-9
24 https://doi.org/10.1016/s0022-2836(05)80134-2
25 https://doi.org/10.1016/s0025-5564(03)00096-8
26 https://doi.org/10.1016/s0167-9473(01)00065-2
27 https://doi.org/10.1017/s0033583505004063
28 https://doi.org/10.1021/ci025620t
29 https://doi.org/10.1021/ja057519l
30 https://doi.org/10.1093/bioinformatics/btg347
31 https://doi.org/10.1093/bioinformatics/bti1007
32 https://doi.org/10.1093/bioinformatics/bti1016
33 https://doi.org/10.1093/bioinformatics/btn273
34 https://doi.org/10.1093/nar/gkf495
35 https://doi.org/10.1093/nar/gkg375
36 https://doi.org/10.1093/nar/gki387
37 https://doi.org/10.1093/nar/gkl720
38 https://doi.org/10.1093/nar/gkp1171
39 https://doi.org/10.1093/nar/gkp726
40 https://doi.org/10.1093/nar/gkq283
41 https://doi.org/10.1093/nar/gkr022
42 https://doi.org/10.1093/nar/gkr186
43 https://doi.org/10.1093/nar/gks268
44 https://doi.org/10.1093/nar/gks320
45 https://doi.org/10.1093/nar/gks502
46 https://doi.org/10.1093/protein/gzq083
47 https://doi.org/10.1107/s0108767307035623
48 https://doi.org/10.1126/science.1087361
49 https://doi.org/10.1126/science.1178811
50 https://doi.org/10.1126/science.1232033
51 https://doi.org/10.18637/jss.v033.i01
52 https://doi.org/10.2174/156652311794520111
53 schema:datePublished 2014-12
54 schema:datePublishedReg 2014-12-01
55 schema:description BACKGROUND: Meganucleases are important tools for genome engineering, providing an efficient way to generate DNA double-strand breaks at specific loci of interest. Numerous experimental efforts, ranging from in vivo selection to in silico modeling, have been made to re-engineer meganucleases to target relevant DNA sequences. RESULTS: Here we present a novel in silico method for designing custom meganucleases that is based on the use of a machine learning approach. We compared it with existing in silico physical models and high-throughput experimental screening. The machine learning model was used to successfully predict active meganucleases for 53 new DNA targets. CONCLUSIONS: This new method shows competitive performance compared with state-of-the-art in silico physical models, with up to a fourfold increase in terms of the design success rate. Compared to experimental high-throughput screening methods, it reduces the number of screening experiments needed by a factor of more than 100 without affecting final performance.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N055a9a3ee718480bb5f82d95630f3cbe
60 N8a5a3995f4944ad2a6b2c716cd75d7e1
61 sg:journal.1023786
62 schema:name Efficient design of meganucleases using a machine learning approach
63 schema:pagination 191
64 schema:productId N172acb084a2d41a8b1065c1dcfca4f4a
65 N1cc7481a136d48f5a0f233accbf7e528
66 N1d9a41b471de460e9cce348154a1b998
67 N6a83f93b5b894725a9ba9b15d15c4bea
68 N81bdcc75b9a640298451be1dbb32d962
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028077547
70 https://doi.org/10.1186/1471-2105-15-191
71 schema:sdDatePublished 2019-04-11T01:05
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N0563a728fc4b4c819ffb173474164de4
74 schema:url http://link.springer.com/10.1186%2F1471-2105-15-191
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N055a9a3ee718480bb5f82d95630f3cbe schema:volumeNumber 15
79 rdf:type schema:PublicationVolume
80 N0563a728fc4b4c819ffb173474164de4 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N0a91dd61624a460b86b7f2142afdd42b rdf:first sg:person.0701631465.95
83 rdf:rest Nf24f1994d0684324ab28106b4a6dd33b
84 N172acb084a2d41a8b1065c1dcfca4f4a schema:name dimensions_id
85 schema:value pub.1028077547
86 rdf:type schema:PropertyValue
87 N1cc7481a136d48f5a0f233accbf7e528 schema:name doi
88 schema:value 10.1186/1471-2105-15-191
89 rdf:type schema:PropertyValue
90 N1d9a41b471de460e9cce348154a1b998 schema:name nlm_unique_id
91 schema:value 100965194
92 rdf:type schema:PropertyValue
93 N201eea81cb8147d4b2abd6eb17e9d4c2 rdf:first sg:person.01032340033.00
94 rdf:rest rdf:nil
95 N2dec8e78e9514dbf94481769ec3752c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Artificial Intelligence
97 rdf:type schema:DefinedTerm
98 N3b3f6136d829401fb623c3aa96fc2ba2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Computer Simulation
100 rdf:type schema:DefinedTerm
101 N6a83f93b5b894725a9ba9b15d15c4bea schema:name readcube_id
102 schema:value 85c0ddf3546aa15f786479d573df95d20ef3d40837ac0942c57b612469acef60
103 rdf:type schema:PropertyValue
104 N8038398a71e44fa5b84d36942a795100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name High-Throughput Screening Assays
106 rdf:type schema:DefinedTerm
107 N81bdcc75b9a640298451be1dbb32d962 schema:name pubmed_id
108 schema:value 24934562
109 rdf:type schema:PropertyValue
110 N8a5a3995f4944ad2a6b2c716cd75d7e1 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N8e0aaee82c0e42b49ab7e913bc9ad1f6 rdf:first sg:person.01324352465.48
113 rdf:rest N201eea81cb8147d4b2abd6eb17e9d4c2
114 Nbab47c977806491e9e914498e25d8ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Sequence Analysis, DNA
116 rdf:type schema:DefinedTerm
117 Nbcdff8a80286402eb7e4b313134b69cf rdf:first sg:person.01114761262.22
118 rdf:rest N8e0aaee82c0e42b49ab7e913bc9ad1f6
119 Nc1ecd1c5bde243cf8d499b2a320462ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name DNA
121 rdf:type schema:DefinedTerm
122 Nf24f1994d0684324ab28106b4a6dd33b rdf:first sg:person.01225455451.86
123 rdf:rest Nbcdff8a80286402eb7e4b313134b69cf
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
128 schema:name Genetics
129 rdf:type schema:DefinedTerm
130 sg:journal.1023786 schema:issn 1471-2105
131 schema:name BMC Bioinformatics
132 rdf:type schema:Periodical
133 sg:person.01032340033.00 schema:affiliation https://www.grid.ac/institutes/grid.433267.7
134 schema:familyName Silva
135 schema:givenName George H
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032340033.00
137 rdf:type schema:Person
138 sg:person.01114761262.22 schema:affiliation https://www.grid.ac/institutes/grid.433267.7
139 schema:familyName Duchateau
140 schema:givenName Philippe
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114761262.22
142 rdf:type schema:Person
143 sg:person.01225455451.86 schema:affiliation https://www.grid.ac/institutes/grid.433267.7
144 schema:familyName Bertonati
145 schema:givenName Claudia
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225455451.86
147 rdf:type schema:Person
148 sg:person.01324352465.48 schema:affiliation https://www.grid.ac/institutes/grid.433267.7
149 schema:familyName Duclert
150 schema:givenName Aymeric
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324352465.48
152 rdf:type schema:Person
153 sg:person.0701631465.95 schema:affiliation https://www.grid.ac/institutes/grid.433267.7
154 schema:familyName Zaslavskiy
155 schema:givenName Mikhail
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701631465.95
157 rdf:type schema:Person
158 sg:pub.10.1038/86181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025743200
159 https://doi.org/10.1038/86181
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature04818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012756616
162 https://doi.org/10.1038/nature04818
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature07845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034947500
165 https://doi.org/10.1038/nature07845
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nbt.2508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888616
168 https://doi.org/10.1038/nbt.2508
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nbt0707-743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035984058
171 https://doi.org/10.1038/nbt0707-743
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nrg2842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018939216
174 https://doi.org/10.1038/nrg2842
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1471-2105-7-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003604257
177 https://doi.org/10.1186/1471-2105-7-7
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1471-2105-7-s1-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051833905
180 https://doi.org/10.1186/1471-2105-7-s1-s7
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.copbio.2006.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036936680
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.copbio.2008.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039007980
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jmb.2004.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014507230
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jmb.2005.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155186
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0022-2836(02)01364-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004669081
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0022-2836(03)00447-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005618641
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0022-2836(05)80134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477247
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0025-5564(03)00096-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021927064
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0167-9473(01)00065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543995
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1017/s0033583505004063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054006523
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/ci025620t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401485
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/ja057519l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055840788
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/btg347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034593423
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bioinformatics/bti1007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043169438
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/bti1016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050590164
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/btn273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046630493
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/nar/gkf495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014225506
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/nar/gkg375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016134561
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/gki387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012352710
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/gkl720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046669585
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gkp1171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041612079
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkp726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038920901
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/nar/gkq283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001978024
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/nar/gkr022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003884687
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/nar/gkr186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018933772
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/gks268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032715859
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/nar/gks320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012705120
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/gks502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008705788
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/protein/gzq083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046099390
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1107/s0108767307035623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050425330
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1087361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048921070
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1178811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014803320
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
249 rdf:type schema:CreativeWork
250 https://doi.org/10.18637/jss.v033.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672496
251 rdf:type schema:CreativeWork
252 https://doi.org/10.2174/156652311794520111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046423203
253 rdf:type schema:CreativeWork
254 https://www.grid.ac/institutes/grid.433267.7 schema:alternateName Takara (France)
255 schema:name Research and Development department, Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...