Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Hongshan Jiang, Rong Lei, Shou-Wei Ding, Shuifang Zhu

ABSTRACT

BACKGROUND: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. RESULTS: To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. CONCLUSIONS: Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound. More... »

PAGES

182

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-182

DOI

http://dx.doi.org/10.1186/1471-2105-15-182

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030198285

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24925680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine", 
          "id": "https://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Huixinli 241, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Hongshan", 
        "id": "sg:person.01336314756.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336314756.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine", 
          "id": "https://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Huixinli 241, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Rong", 
        "id": "sg:person.0612710656.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612710656.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Plant Pathology and Microbiology and Institute for Integrative Biology, University of California, Riverside, 900 University Ave, 92521, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Shou-Wei", 
        "id": "sg:person.0576414546.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576414546.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine", 
          "id": "https://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Huixinli 241, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Shuifang", 
        "id": "sg:person.0727137256.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727137256.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001773338", 
          "https://doi.org/10.1038/nmeth.1179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004595205", 
          "https://doi.org/10.1186/1471-2105-11-341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008059544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.089532.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011404279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2013.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011945276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015459845", 
          "https://doi.org/10.1186/gb-2013-14-4-r36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-5-337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672942", 
          "https://doi.org/10.1186/1756-0500-5-337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-5-337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672942", 
          "https://doi.org/10.1186/1756-0500-5-337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2011.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/biology1030895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018168136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-5-r54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021048787", 
          "https://doi.org/10.1186/gb-2009-10-5-r54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-6774(85)90023-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022034071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024367579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033430428", 
          "https://doi.org/10.1038/nmeth.2762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033736291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045737797", 
          "https://doi.org/10.1186/1471-2105-11-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047209905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/316542.316550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048665020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053722790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14806/ej.17.1.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067372670"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing.\nRESULTS: To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing.\nCONCLUSIONS: Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-182", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads", 
    "pagination": "182", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fdc310a8f7b8c8ff584e5da412e2c3eae9ff5abb89f3021dd2924295537f8df"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24925680"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-182"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030198285"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-182", 
      "https://app.dimensions.ai/details/publication/pub.1030198285"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-15-182"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-182'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-182'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-182'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-182'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      62 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-182 schema:about N0d3eeaa8d9f94cc58694728e5473ebf9
2 N1871be6155a247f29b9796012571701d
3 N2c49e2928f6a411b90d46810865226c4
4 N33e039f0f0224b3186adb2e4822ef1f7
5 N43bb2e279ec94c679deb851468a048bf
6 N6467000a1ef2403daa70c416a2c67636
7 N9e240b35738e4b4980f9d8c97d2ef567
8 Nd989afedc6154208a81e1220fd68a37c
9 Neddfa7d030534e168ec030b2a599e9f8
10 Nf6e13059c3df4ce0b49fd79d9f3d75c4
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N5aa1eb55b14a476f8c99fc0f30d9804a
14 schema:citation sg:pub.10.1038/nmeth.1179
15 sg:pub.10.1038/nmeth.1923
16 sg:pub.10.1038/nmeth.2762
17 sg:pub.10.1186/1471-2105-11-341
18 sg:pub.10.1186/1471-2105-11-38
19 sg:pub.10.1186/1756-0500-5-337
20 sg:pub.10.1186/gb-2009-10-5-r54
21 sg:pub.10.1186/gb-2013-14-4-r36
22 https://doi.org/10.1016/0022-2836(70)90057-4
23 https://doi.org/10.1016/0022-2836(81)90087-5
24 https://doi.org/10.1016/0196-6774(85)90023-9
25 https://doi.org/10.1016/j.ygeno.2011.05.009
26 https://doi.org/10.1016/j.ygeno.2013.07.011
27 https://doi.org/10.1093/bioinformatics/btp120
28 https://doi.org/10.1093/bioinformatics/btr708
29 https://doi.org/10.1093/bioinformatics/btt702
30 https://doi.org/10.1093/nar/gkg094
31 https://doi.org/10.1093/nar/gks540
32 https://doi.org/10.1101/gr.089532.108
33 https://doi.org/10.1145/316542.316550
34 https://doi.org/10.1371/journal.pone.0085024
35 https://doi.org/10.14806/ej.17.1.200
36 https://doi.org/10.3390/biology1030895
37 schema:datePublished 2014-12
38 schema:datePublishedReg 2014-12-01
39 schema:description BACKGROUND: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. RESULTS: To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. CONCLUSIONS: Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N78357c3eb90944f6a267849a729ae81a
44 Nb562d10aabf6443cbd64218b56066e60
45 sg:journal.1023786
46 schema:name Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads
47 schema:pagination 182
48 schema:productId N25965590ed1948b38a9d5461c51e06ac
49 N651874c9db78420fb6c4e6710c9f217d
50 N9d4df35e4585420d806c7dae409e5686
51 Na01e2c34c18d4985a16e550331ad5efe
52 Nec357ff032034e88b2dacc607083bb24
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030198285
54 https://doi.org/10.1186/1471-2105-15-182
55 schema:sdDatePublished 2019-04-10T22:30
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nfe08bd2978894cf8a8a2c3bac53a2c82
58 schema:url http://link.springer.com/10.1186%2F1471-2105-15-182
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0d3eeaa8d9f94cc58694728e5473ebf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Sequence Analysis, RNA
64 rdf:type schema:DefinedTerm
65 N1871be6155a247f29b9796012571701d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Drosophila
67 rdf:type schema:DefinedTerm
68 N25965590ed1948b38a9d5461c51e06ac schema:name doi
69 schema:value 10.1186/1471-2105-15-182
70 rdf:type schema:PropertyValue
71 N2c49e2928f6a411b90d46810865226c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Humans
73 rdf:type schema:DefinedTerm
74 N33e039f0f0224b3186adb2e4822ef1f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name High-Throughput Nucleotide Sequencing
76 rdf:type schema:DefinedTerm
77 N356d57ef878a4e219e4d562a6a32b7b8 rdf:first sg:person.0727137256.58
78 rdf:rest rdf:nil
79 N40c1461728594e43a3142312e6baed9c rdf:first sg:person.0612710656.43
80 rdf:rest N9e9bd77af52e4fdcbbe7ae9871291a86
81 N43bb2e279ec94c679deb851468a048bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Animals
83 rdf:type schema:DefinedTerm
84 N5aa1eb55b14a476f8c99fc0f30d9804a rdf:first sg:person.01336314756.54
85 rdf:rest N40c1461728594e43a3142312e6baed9c
86 N6467000a1ef2403daa70c416a2c67636 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Algorithms
88 rdf:type schema:DefinedTerm
89 N651874c9db78420fb6c4e6710c9f217d schema:name readcube_id
90 schema:value 8fdc310a8f7b8c8ff584e5da412e2c3eae9ff5abb89f3021dd2924295537f8df
91 rdf:type schema:PropertyValue
92 N78357c3eb90944f6a267849a729ae81a schema:volumeNumber 15
93 rdf:type schema:PublicationVolume
94 N9d4df35e4585420d806c7dae409e5686 schema:name dimensions_id
95 schema:value pub.1030198285
96 rdf:type schema:PropertyValue
97 N9e240b35738e4b4980f9d8c97d2ef567 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Caenorhabditis elegans
99 rdf:type schema:DefinedTerm
100 N9e9bd77af52e4fdcbbe7ae9871291a86 rdf:first sg:person.0576414546.85
101 rdf:rest N356d57ef878a4e219e4d562a6a32b7b8
102 Na01e2c34c18d4985a16e550331ad5efe schema:name nlm_unique_id
103 schema:value 100965194
104 rdf:type schema:PropertyValue
105 Nb562d10aabf6443cbd64218b56066e60 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 Nd989afedc6154208a81e1220fd68a37c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Arabidopsis
109 rdf:type schema:DefinedTerm
110 Nec357ff032034e88b2dacc607083bb24 schema:name pubmed_id
111 schema:value 24925680
112 rdf:type schema:PropertyValue
113 Neddfa7d030534e168ec030b2a599e9f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Software
115 rdf:type schema:DefinedTerm
116 Nf6e13059c3df4ce0b49fd79d9f3d75c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Time Factors
118 rdf:type schema:DefinedTerm
119 Nfe08bd2978894cf8a8a2c3bac53a2c82 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:journal.1023786 schema:issn 1471-2105
128 schema:name BMC Bioinformatics
129 rdf:type schema:Periodical
130 sg:person.01336314756.54 schema:affiliation https://www.grid.ac/institutes/grid.418544.8
131 schema:familyName Jiang
132 schema:givenName Hongshan
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336314756.54
134 rdf:type schema:Person
135 sg:person.0576414546.85 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
136 schema:familyName Ding
137 schema:givenName Shou-Wei
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576414546.85
139 rdf:type schema:Person
140 sg:person.0612710656.43 schema:affiliation https://www.grid.ac/institutes/grid.418544.8
141 schema:familyName Lei
142 schema:givenName Rong
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612710656.43
144 rdf:type schema:Person
145 sg:person.0727137256.58 schema:affiliation https://www.grid.ac/institutes/grid.418544.8
146 schema:familyName Zhu
147 schema:givenName Shuifang
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727137256.58
149 rdf:type schema:Person
150 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
151 https://doi.org/10.1038/nmeth.1179
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
154 https://doi.org/10.1038/nmeth.1923
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nmeth.2762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430428
157 https://doi.org/10.1038/nmeth.2762
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1471-2105-11-341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004595205
160 https://doi.org/10.1186/1471-2105-11-341
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/1471-2105-11-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045737797
163 https://doi.org/10.1186/1471-2105-11-38
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/1756-0500-5-337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672942
166 https://doi.org/10.1186/1756-0500-5-337
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/gb-2009-10-5-r54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021048787
169 https://doi.org/10.1186/gb-2009-10-5-r54
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
172 https://doi.org/10.1186/gb-2013-14-4-r36
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0196-6774(85)90023-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022034071
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ygeno.2011.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724343
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ygeno.2013.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011945276
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/bioinformatics/btr708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008059544
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/bioinformatics/btt702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024367579
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/nar/gkg094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053722790
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/nar/gks540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033736291
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1101/gr.089532.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011404279
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/316542.316550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048665020
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pone.0085024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047209905
199 rdf:type schema:CreativeWork
200 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3390/biology1030895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018168136
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.266097.c schema:alternateName University of California, Riverside
205 schema:name Department of Plant Pathology and Microbiology and Institute for Integrative Biology, University of California, Riverside, 900 University Ave, 92521, Riverside, USA
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.418544.8 schema:alternateName Chinese Academy of Inspection and Quarantine
208 schema:name Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Huixinli 241, 100029, Beijing, China
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...