Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Carmen M Livi, Enrico Blanzieri

ABSTRACT

BACKGROUND: RNA-binding proteins interact with specific RNA molecules to regulate important cellular processes. It is therefore necessary to identify the RNA interaction partners in order to understand the precise functions of such proteins. Protein-RNA interactions are typically characterized using in vivo and in vitro experiments but these may not detect all binding partners. Therefore, computational methods that capture the protein-dependent nature of such binding interactions could help to predict potential binding partners in silico. RESULTS: We have developed three methods to predict whether an RNA can interact with a particular RNA-binding protein using support vector machines and different features based on the sequence (the Oli method), the motif score (the OliMo method) and the secondary structure (the OliMoSS method). We applied these approaches to different experimentally-derived datasets and compared the predictions with RNAcontext and RPISeq. Oli outperformed OliMoSS and RPISeq, confirming our protein-specific predictions and suggesting that tetranucleotide frequencies are appropriate discriminative features. Oli and RNAcontext were the most competitive methods in terms of the area under curve. A precision-recall curve analysis achieved higher precision values for Oli. On a second experimental dataset including real negative binding information, Oli outperformed RNAcontext with a precision of 0.73 vs. 0.59. CONCLUSIONS: Our experiments showed that features based on primary sequence information are sufficiently discriminating to predict specific RNA-protein interactions. Sequence motifs and secondary structure information were not necessary to improve these predictions. Finally we confirmed that protein-specific experimental data concerning RNA-protein interactions are valuable sources of information that can be used for the efficient training of models for in silico predictions. The scripts are available upon request to the corresponding author. More... »

PAGES

123

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-123

DOI

http://dx.doi.org/10.1186/1471-2105-15-123

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007162385

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24780077


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pompeu Fabra University", 
          "id": "https://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 5, Trento, Italy", 
            "Gene Function and Evolution, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain", 
            "Universitat Pompeu Fabra (UPF), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livi", 
        "givenName": "Carmen M", 
        "id": "sg:person.01354434440.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354434440.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 5, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanzieri", 
        "givenName": "Enrico", 
        "id": "sg:person.013033541655.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/database/bar009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002484367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2017210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2010.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005297170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007075476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007915246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007915246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010619993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/jcsb.1000115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011776544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013038565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014658414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014907180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2mb25292a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015473332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-010-0639-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017734478", 
          "https://doi.org/10.1007/s00726-010-0639-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-010-0639-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017734478", 
          "https://doi.org/10.1007/s00726-010-0639-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-010-0639-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017734478", 
          "https://doi.org/10.1007/s00726-010-0639-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018028284", 
          "https://doi.org/10.1186/1471-2105-12-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018028284", 
          "https://doi.org/10.1186/1471-2105-12-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-3-r17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018345240", 
          "https://doi.org/10.1186/gb-2012-13-3-r17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.2991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021517237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022228800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024986403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025585804", 
          "https://doi.org/10.1038/nmeth.1608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025904619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026868923", 
          "https://doi.org/10.1038/nbt.1873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029194520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2011.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029410415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2011.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030849521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00818163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032495505", 
          "https://doi.org/10.1007/bf00818163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032647504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033358691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.216531.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034105319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037880452", 
          "https://doi.org/10.1038/nmeth.1611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2010.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041414025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042941044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-s12-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043299234", 
          "https://doi.org/10.1186/1471-2105-9-s12-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.c111.266882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044094843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045310310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2197306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045643597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0282(1998)48:2<181::aid-bip7>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045981488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2011.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046066659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-248-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046385078", 
          "https://doi.org/10.1007/978-1-59745-248-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-248-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046385078", 
          "https://doi.org/10.1007/978-1-59745-248-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048212991", 
          "https://doi.org/10.1186/1471-2105-8-174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048212991", 
          "https://doi.org/10.1186/1471-2105-8-174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0287-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050693635", 
          "https://doi.org/10.1007/s10115-010-0287-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2012.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051245960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2012.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051245960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-s13-s5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052988020", 
          "https://doi.org/10.1186/1471-2105-12-s13-s5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2200121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062527213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077008215", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579550"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: RNA-binding proteins interact with specific RNA molecules to regulate important cellular processes. It is therefore necessary to identify the RNA interaction partners in order to understand the precise functions of such proteins. Protein-RNA interactions are typically characterized using in vivo and in vitro experiments but these may not detect all binding partners. Therefore, computational methods that capture the protein-dependent nature of such binding interactions could help to predict potential binding partners in silico.\nRESULTS: We have developed three methods to predict whether an RNA can interact with a particular RNA-binding protein using support vector machines and different features based on the sequence (the Oli method), the motif score (the OliMo method) and the secondary structure (the OliMoSS method). We applied these approaches to different experimentally-derived datasets and compared the predictions with RNAcontext and RPISeq. Oli outperformed OliMoSS and RPISeq, confirming our protein-specific predictions and suggesting that tetranucleotide frequencies are appropriate discriminative features. Oli and RNAcontext were the most competitive methods in terms of the area under curve. A precision-recall curve analysis achieved higher precision values for Oli. On a second experimental dataset including real negative binding information, Oli outperformed RNAcontext with a precision of 0.73 vs. 0.59.\nCONCLUSIONS: Our experiments showed that features based on primary sequence information are sufficiently discriminating to predict specific RNA-protein interactions. Sequence motifs and secondary structure information were not necessary to improve these predictions. Finally we confirmed that protein-specific experimental data concerning RNA-protein interactions are valuable sources of information that can be used for the efficient training of models for in silico predictions. The scripts are available upon request to the corresponding author.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-123", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures", 
    "pagination": "123", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "221db9b7414957036621303303ffc5ccd1038e79a33a93e0cc9c27f9784019d9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24780077"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-123"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007162385"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-123", 
      "https://app.dimensions.ai/details/publication/pub.1007162385"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99818_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-15-123"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-123'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-123'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-123'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-123'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      83 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-123 schema:about N018e7b69da2b425ab9fe7dbc881738b0
2 N14923e77041e4f9dbb5bc57679ccbbb8
3 N1a11fefc429940ada2aa773746df8fea
4 N3f53c21d31754b9c916fe6b82b438922
5 N4a06c4df21174d60856914210e80bbf4
6 Na4bafc786d884acf93c8bef447c1cd7a
7 Nb92ea278ae094fba850c7f65cb8d192d
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author Na383d522947c40d7a6983807c84f99bc
11 schema:citation sg:pub.10.1007/978-1-4757-2440-0
12 sg:pub.10.1007/978-1-59745-248-9_17
13 sg:pub.10.1007/bf00818163
14 sg:pub.10.1007/s00726-010-0639-7
15 sg:pub.10.1007/s10115-010-0287-y
16 sg:pub.10.1038/nbt.1873
17 sg:pub.10.1038/nmeth.1608
18 sg:pub.10.1038/nmeth.1611
19 sg:pub.10.1186/1471-2105-12-489
20 sg:pub.10.1186/1471-2105-12-s13-s5
21 sg:pub.10.1186/1471-2105-8-174
22 sg:pub.10.1186/1471-2105-9-s12-s6
23 sg:pub.10.1186/gb-2012-13-3-r17
24 https://app.dimensions.ai/details/publication/pub.1077008215
25 https://doi.org/10.1002/(sici)1097-0282(1998)48:2<181::aid-bip7>3.0.co;2-l
26 https://doi.org/10.1006/jmbi.1999.2991
27 https://doi.org/10.1016/j.cell.2010.03.009
28 https://doi.org/10.1016/j.febslet.2008.03.004
29 https://doi.org/10.1016/j.gene.2010.05.001
30 https://doi.org/10.1016/j.molcel.2011.06.007
31 https://doi.org/10.1016/j.semcdb.2011.02.016
32 https://doi.org/10.1016/j.str.2011.06.006
33 https://doi.org/10.1016/j.tibs.2012.02.005
34 https://doi.org/10.1016/j.ymeth.2012.09.006
35 https://doi.org/10.1039/c2mb25292a
36 https://doi.org/10.1074/jbc.c111.266882
37 https://doi.org/10.1093/bioinformatics/bti499
38 https://doi.org/10.1093/bioinformatics/btq253
39 https://doi.org/10.1093/bioinformatics/btq461
40 https://doi.org/10.1093/bioinformatics/btr608
41 https://doi.org/10.1093/database/bar009
42 https://doi.org/10.1093/nar/30.1.207
43 https://doi.org/10.1093/nar/gkj425
44 https://doi.org/10.1093/nar/gkl298
45 https://doi.org/10.1093/nar/gkl620
46 https://doi.org/10.1093/nar/gkp335
47 https://doi.org/10.1093/nar/gkp972
48 https://doi.org/10.1093/nar/gkq963
49 https://doi.org/10.1093/nar/gkr160
50 https://doi.org/10.1101/gad.216531.113
51 https://doi.org/10.1126/science.2200121
52 https://doi.org/10.1145/1961189.1961199
53 https://doi.org/10.1261/rna.2017210
54 https://doi.org/10.1261/rna.2197306
55 https://doi.org/10.1371/journal.pcbi.1000832
56 https://doi.org/10.1613/jair.953
57 https://doi.org/10.4172/jcsb.1000115
58 schema:datePublished 2014-12
59 schema:datePublishedReg 2014-12-01
60 schema:description BACKGROUND: RNA-binding proteins interact with specific RNA molecules to regulate important cellular processes. It is therefore necessary to identify the RNA interaction partners in order to understand the precise functions of such proteins. Protein-RNA interactions are typically characterized using in vivo and in vitro experiments but these may not detect all binding partners. Therefore, computational methods that capture the protein-dependent nature of such binding interactions could help to predict potential binding partners in silico. RESULTS: We have developed three methods to predict whether an RNA can interact with a particular RNA-binding protein using support vector machines and different features based on the sequence (the Oli method), the motif score (the OliMo method) and the secondary structure (the OliMoSS method). We applied these approaches to different experimentally-derived datasets and compared the predictions with RNAcontext and RPISeq. Oli outperformed OliMoSS and RPISeq, confirming our protein-specific predictions and suggesting that tetranucleotide frequencies are appropriate discriminative features. Oli and RNAcontext were the most competitive methods in terms of the area under curve. A precision-recall curve analysis achieved higher precision values for Oli. On a second experimental dataset including real negative binding information, Oli outperformed RNAcontext with a precision of 0.73 vs. 0.59. CONCLUSIONS: Our experiments showed that features based on primary sequence information are sufficiently discriminating to predict specific RNA-protein interactions. Sequence motifs and secondary structure information were not necessary to improve these predictions. Finally we confirmed that protein-specific experimental data concerning RNA-protein interactions are valuable sources of information that can be used for the efficient training of models for in silico predictions. The scripts are available upon request to the corresponding author.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N67082b3d522c42a38314df1be6e731b2
65 N8c6f0419790540b387b93c94945a0222
66 sg:journal.1023786
67 schema:name Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures
68 schema:pagination 123
69 schema:productId N2184b55f47e444a380ebebb7bd11c0c7
70 N6401df81ac724eb596d41c202681c9dd
71 Nb83fca8e81cd43698dcea9405dbe8534
72 Nce99fa3885ce4d49b2604520275beb5c
73 Nd1192c4ec3824484819f5fb2429168e1
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007162385
75 https://doi.org/10.1186/1471-2105-15-123
76 schema:sdDatePublished 2019-04-11T09:34
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N9191e47aa5de4f2589b582098d6e2575
79 schema:url https://link.springer.com/10.1186%2F1471-2105-15-123
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N018e7b69da2b425ab9fe7dbc881738b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name RNA, Messenger
85 rdf:type schema:DefinedTerm
86 N14923e77041e4f9dbb5bc57679ccbbb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Computer Simulation
88 rdf:type schema:DefinedTerm
89 N1a11fefc429940ada2aa773746df8fea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Support Vector Machine
91 rdf:type schema:DefinedTerm
92 N2184b55f47e444a380ebebb7bd11c0c7 schema:name nlm_unique_id
93 schema:value 100965194
94 rdf:type schema:PropertyValue
95 N3f53c21d31754b9c916fe6b82b438922 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Nucleic Acid Conformation
97 rdf:type schema:DefinedTerm
98 N4a06c4df21174d60856914210e80bbf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name RNA-Binding Proteins
100 rdf:type schema:DefinedTerm
101 N6401df81ac724eb596d41c202681c9dd schema:name pubmed_id
102 schema:value 24780077
103 rdf:type schema:PropertyValue
104 N67082b3d522c42a38314df1be6e731b2 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N8c6f0419790540b387b93c94945a0222 schema:volumeNumber 15
107 rdf:type schema:PublicationVolume
108 N9191e47aa5de4f2589b582098d6e2575 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Na383d522947c40d7a6983807c84f99bc rdf:first sg:person.01354434440.38
111 rdf:rest Ndf97a7a1060c47368a485c6a34043be4
112 Na4bafc786d884acf93c8bef447c1cd7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Sequence Analysis, RNA
114 rdf:type schema:DefinedTerm
115 Nb83fca8e81cd43698dcea9405dbe8534 schema:name dimensions_id
116 schema:value pub.1007162385
117 rdf:type schema:PropertyValue
118 Nb92ea278ae094fba850c7f65cb8d192d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Humans
120 rdf:type schema:DefinedTerm
121 Nce99fa3885ce4d49b2604520275beb5c schema:name doi
122 schema:value 10.1186/1471-2105-15-123
123 rdf:type schema:PropertyValue
124 Nd1192c4ec3824484819f5fb2429168e1 schema:name readcube_id
125 schema:value 221db9b7414957036621303303ffc5ccd1038e79a33a93e0cc9c27f9784019d9
126 rdf:type schema:PropertyValue
127 Ndf97a7a1060c47368a485c6a34043be4 rdf:first sg:person.013033541655.32
128 rdf:rest rdf:nil
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biochemistry and Cell Biology
134 rdf:type schema:DefinedTerm
135 sg:journal.1023786 schema:issn 1471-2105
136 schema:name BMC Bioinformatics
137 rdf:type schema:Periodical
138 sg:person.013033541655.32 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
139 schema:familyName Blanzieri
140 schema:givenName Enrico
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32
142 rdf:type schema:Person
143 sg:person.01354434440.38 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
144 schema:familyName Livi
145 schema:givenName Carmen M
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354434440.38
147 rdf:type schema:Person
148 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
149 https://doi.org/10.1007/978-1-4757-2440-0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-1-59745-248-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046385078
152 https://doi.org/10.1007/978-1-59745-248-9_17
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf00818163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495505
155 https://doi.org/10.1007/bf00818163
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00726-010-0639-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017734478
158 https://doi.org/10.1007/s00726-010-0639-7
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10115-010-0287-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050693635
161 https://doi.org/10.1007/s10115-010-0287-y
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nbt.1873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026868923
164 https://doi.org/10.1038/nbt.1873
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nmeth.1608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025585804
167 https://doi.org/10.1038/nmeth.1608
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nmeth.1611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037880452
170 https://doi.org/10.1038/nmeth.1611
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2105-12-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018028284
173 https://doi.org/10.1186/1471-2105-12-489
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-12-s13-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052988020
176 https://doi.org/10.1186/1471-2105-12-s13-s5
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2105-8-174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048212991
179 https://doi.org/10.1186/1471-2105-8-174
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2105-9-s12-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043299234
182 https://doi.org/10.1186/1471-2105-9-s12-s6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/gb-2012-13-3-r17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018345240
185 https://doi.org/10.1186/gb-2012-13-3-r17
186 rdf:type schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1077008215 schema:CreativeWork
188 https://doi.org/10.1002/(sici)1097-0282(1998)48:2<181::aid-bip7>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1045981488
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1006/jmbi.1999.2991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021517237
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.cell.2010.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041414025
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.febslet.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032647504
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.gene.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005077248
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.molcel.2011.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046066659
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.semcdb.2011.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029410415
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.str.2011.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030849521
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.tibs.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014658414
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.ymeth.2012.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051245960
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1039/c2mb25292a schema:sameAs https://app.dimensions.ai/details/publication/pub.1015473332
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1074/jbc.c111.266882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044094843
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/bti499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013038565
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/btq253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029194520
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/btq461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904619
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/btr608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045310310
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/database/bar009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002484367
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/30.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005297170
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gkj425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033358691
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkl298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042941044
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/nar/gkl620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022228800
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/nar/gkp335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007915246
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/nar/gkp972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014907180
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/gkq963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007075476
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/nar/gkr160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024986403
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1101/gad.216531.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034105319
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1126/science.2200121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062527213
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1261/rna.2017210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083950
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1261/rna.2197306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045643597
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pcbi.1000832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010619993
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1613/jair.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579550
251 rdf:type schema:CreativeWork
252 https://doi.org/10.4172/jcsb.1000115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011776544
253 rdf:type schema:CreativeWork
254 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
255 schema:name Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 5, Trento, Italy
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.5612.0 schema:alternateName Pompeu Fabra University
258 schema:name Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 5, Trento, Italy
259 Gene Function and Evolution, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain
260 Universitat Pompeu Fabra (UPF), Barcelona, Spain
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...