ConSole: using modularity of Contact maps to locate Solenoid domains in protein structures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Thomas Hrabe, Adam Godzik

ABSTRACT

BACKGROUND: Periodic proteins, characterized by the presence of multiple repeats of short motifs, form an interesting and seldom-studied group. Due to often extreme divergence in sequence, detection and analysis of such motifs is performed more reliably on the structural level. Yet, few algorithms have been developed for the detection and analysis of structures of periodic proteins. RESULTS: ConSole recognizes modularity in protein contact maps, allowing for precise identification of repeats in solenoid protein structures, an important subgroup of periodic proteins. Tests on benchmarks show that ConSole has higher recognition accuracy as compared to Raphael, the only other publicly available solenoid structure detection tool. As a next step of ConSole analysis, we show how detection of solenoid repeats in structures can be used to improve sequence recognition of these motifs and to detect subtle irregularities of repeat lengths in three solenoid protein families. CONCLUSIONS: The ConSole algorithm provides a fast and accurate tool to recognize solenoid protein structures as a whole and to identify individual solenoid repeat units from a structure. ConSole is available as a web-based, interactive server and is available for download at http://console.sanfordburnham.org. More... »

PAGES

119

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-15-119

DOI

http://dx.doi.org/10.1186/1471-2105-15-119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026976295

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24766872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Repetitive Sequences, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sanford Burnham Prebys Medical Discovery Institute", 
          "id": "https://www.grid.ac/institutes/grid.479509.6", 
          "name": [
            "Program in Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hrabe", 
        "givenName": "Thomas", 
        "id": "sg:person.01256660416.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256660416.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sanford Burnham Prebys Medical Discovery Institute", 
          "id": "https://www.grid.ac/institutes/grid.479509.6", 
          "name": [
            "Program in Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Godzik", 
        "givenName": "Adam", 
        "id": "sg:person.01064406065.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064406065.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1074/jbc.273.4.2199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003218660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2011.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003898203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004943838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005455151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2010.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006134147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(99)01426-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006904715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-440x(01)00266-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008266389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35100529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008398067", 
          "https://doi.org/10.1038/35100529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35100529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008398067", 
          "https://doi.org/10.1038/35100529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009870827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011232850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-008-8019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016079248", 
          "https://doi.org/10.1007/s00018-008-8019-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.849004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(00)01667-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017997133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019247667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.1173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025461989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2011.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028056971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2010.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028706713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560040820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035847613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/130385.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.5.412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036490773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037683652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039846240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040648199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041665096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp402105j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041736714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047122537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048269594", 
          "https://doi.org/10.1186/1471-2105-8-382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0002119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050589322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2011.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052211126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.2000.4328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052975825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053102221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/6.8.801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5275.595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077532675", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424098", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Periodic proteins, characterized by the presence of multiple repeats of short motifs, form an interesting and seldom-studied group. Due to often extreme divergence in sequence, detection and analysis of such motifs is performed more reliably on the structural level. Yet, few algorithms have been developed for the detection and analysis of structures of periodic proteins.\nRESULTS: ConSole recognizes modularity in protein contact maps, allowing for precise identification of repeats in solenoid protein structures, an important subgroup of periodic proteins. Tests on benchmarks show that ConSole has higher recognition accuracy as compared to Raphael, the only other publicly available solenoid structure detection tool. As a next step of ConSole analysis, we show how detection of solenoid repeats in structures can be used to improve sequence recognition of these motifs and to detect subtle irregularities of repeat lengths in three solenoid protein families.\nCONCLUSIONS: The ConSole algorithm provides a fast and accurate tool to recognize solenoid protein structures as a whole and to identify individual solenoid repeat units from a structure. ConSole is available as a web-based, interactive server and is available for download at http://console.sanfordburnham.org.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-15-119", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2521692", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "ConSole: using modularity of Contact maps to locate Solenoid domains in protein structures", 
    "pagination": "119", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "808233008b064de0cd1ca1d9494adc0c5462942131d88f0abd60d57cfc22d102"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24766872"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-15-119"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026976295"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-15-119", 
      "https://app.dimensions.ai/details/publication/pub.1026976295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2105-15-119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-15-119'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      70 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-15-119 schema:about N33c7e3374da643c7a929504b29cc9d97
2 N63c1eed39a3942eea7661e9fc6f55cf0
3 N72d40fb309da4d1f9e5279d032511ba0
4 N7de58f0961794fdab981f75bff3388b4
5 Na3af27f1407f47eb83cb6bf98d577433
6 Nd22ed493be4440918f85d848e121c902
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author N8356d425a7304ac09b437d8b443ddba9
10 schema:citation sg:pub.10.1007/s00018-008-8019-0
11 sg:pub.10.1038/35100529
12 sg:pub.10.1186/1471-2105-8-382
13 https://app.dimensions.ai/details/publication/pub.1077532675
14 https://app.dimensions.ai/details/publication/pub.1082424098
15 https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z
16 https://doi.org/10.1002/pro.5560040820
17 https://doi.org/10.1002/prot.1173
18 https://doi.org/10.1002/prot.20202
19 https://doi.org/10.1006/jmbi.1993.1489
20 https://doi.org/10.1006/jsbi.2000.4328
21 https://doi.org/10.1016/j.compbiolchem.2010.03.006
22 https://doi.org/10.1016/j.immuni.2011.05.006
23 https://doi.org/10.1016/j.jsb.2011.08.009
24 https://doi.org/10.1016/j.jsb.2011.12.003
25 https://doi.org/10.1016/j.tcb.2010.05.003
26 https://doi.org/10.1016/s0959-440x(01)00266-4
27 https://doi.org/10.1016/s0968-0004(00)01667-4
28 https://doi.org/10.1016/s0968-0004(99)01426-7
29 https://doi.org/10.1021/jp402105j
30 https://doi.org/10.1074/jbc.273.4.2199
31 https://doi.org/10.1093/bioinformatics/16.5.412
32 https://doi.org/10.1093/bioinformatics/btg1086
33 https://doi.org/10.1093/bioinformatics/bti353
34 https://doi.org/10.1093/bioinformatics/btn039
35 https://doi.org/10.1093/bioinformatics/btp163
36 https://doi.org/10.1093/bioinformatics/btp232
37 https://doi.org/10.1093/bioinformatics/btq371
38 https://doi.org/10.1093/bioinformatics/btr163
39 https://doi.org/10.1093/bioinformatics/bts550
40 https://doi.org/10.1093/protein/6.8.801
41 https://doi.org/10.1101/gr.849004
42 https://doi.org/10.1126/science.273.5275.595
43 https://doi.org/10.1145/130385.130401
44 https://doi.org/10.1371/journal.pone.0002119
45 schema:datePublished 2014-12
46 schema:datePublishedReg 2014-12-01
47 schema:description BACKGROUND: Periodic proteins, characterized by the presence of multiple repeats of short motifs, form an interesting and seldom-studied group. Due to often extreme divergence in sequence, detection and analysis of such motifs is performed more reliably on the structural level. Yet, few algorithms have been developed for the detection and analysis of structures of periodic proteins. RESULTS: ConSole recognizes modularity in protein contact maps, allowing for precise identification of repeats in solenoid protein structures, an important subgroup of periodic proteins. Tests on benchmarks show that ConSole has higher recognition accuracy as compared to Raphael, the only other publicly available solenoid structure detection tool. As a next step of ConSole analysis, we show how detection of solenoid repeats in structures can be used to improve sequence recognition of these motifs and to detect subtle irregularities of repeat lengths in three solenoid protein families. CONCLUSIONS: The ConSole algorithm provides a fast and accurate tool to recognize solenoid protein structures as a whole and to identify individual solenoid repeat units from a structure. ConSole is available as a web-based, interactive server and is available for download at http://console.sanfordburnham.org.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N1534545ca6fb4902830f8f574dab941d
52 Nd66a605002b448579fd97666cffb9495
53 sg:journal.1023786
54 schema:name ConSole: using modularity of Contact maps to locate Solenoid domains in protein structures
55 schema:pagination 119
56 schema:productId N584945d188c14bc59c941a64f9ca1fe0
57 N6e57cfc0d22d46f8a84a4f1c1acb36c2
58 N85b532c78eba403898361271d410cc17
59 Nd64d14458fdb4305b480097902973651
60 Ne1295f18dcef41aba7125f24a7ceed0f
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026976295
62 https://doi.org/10.1186/1471-2105-15-119
63 schema:sdDatePublished 2019-04-10T17:30
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N1da58ce10dee454da6eccb7ebc7aa4c7
66 schema:url http://link.springer.com/10.1186%2F1471-2105-15-119
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N1534545ca6fb4902830f8f574dab941d schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N1da58ce10dee454da6eccb7ebc7aa4c7 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N33c7e3374da643c7a929504b29cc9d97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Proteins
76 rdf:type schema:DefinedTerm
77 N584945d188c14bc59c941a64f9ca1fe0 schema:name pubmed_id
78 schema:value 24766872
79 rdf:type schema:PropertyValue
80 N63c1eed39a3942eea7661e9fc6f55cf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Algorithms
82 rdf:type schema:DefinedTerm
83 N6e57cfc0d22d46f8a84a4f1c1acb36c2 schema:name nlm_unique_id
84 schema:value 100965194
85 rdf:type schema:PropertyValue
86 N72d40fb309da4d1f9e5279d032511ba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Software
88 rdf:type schema:DefinedTerm
89 N7de58f0961794fdab981f75bff3388b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Protein Structure, Tertiary
91 rdf:type schema:DefinedTerm
92 N8356d425a7304ac09b437d8b443ddba9 rdf:first sg:person.01256660416.28
93 rdf:rest Naf387ca5cf9f4a3dad8d84cb29ff7e9c
94 N85b532c78eba403898361271d410cc17 schema:name readcube_id
95 schema:value 808233008b064de0cd1ca1d9494adc0c5462942131d88f0abd60d57cfc22d102
96 rdf:type schema:PropertyValue
97 Na3af27f1407f47eb83cb6bf98d577433 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Protein Conformation
99 rdf:type schema:DefinedTerm
100 Naf387ca5cf9f4a3dad8d84cb29ff7e9c rdf:first sg:person.01064406065.43
101 rdf:rest rdf:nil
102 Nd22ed493be4440918f85d848e121c902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Repetitive Sequences, Amino Acid
104 rdf:type schema:DefinedTerm
105 Nd64d14458fdb4305b480097902973651 schema:name dimensions_id
106 schema:value pub.1026976295
107 rdf:type schema:PropertyValue
108 Nd66a605002b448579fd97666cffb9495 schema:volumeNumber 15
109 rdf:type schema:PublicationVolume
110 Ne1295f18dcef41aba7125f24a7ceed0f schema:name doi
111 schema:value 10.1186/1471-2105-15-119
112 rdf:type schema:PropertyValue
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:grant.2521692 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-15-119
120 rdf:type schema:MonetaryGrant
121 sg:journal.1023786 schema:issn 1471-2105
122 schema:name BMC Bioinformatics
123 rdf:type schema:Periodical
124 sg:person.01064406065.43 schema:affiliation https://www.grid.ac/institutes/grid.479509.6
125 schema:familyName Godzik
126 schema:givenName Adam
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064406065.43
128 rdf:type schema:Person
129 sg:person.01256660416.28 schema:affiliation https://www.grid.ac/institutes/grid.479509.6
130 schema:familyName Hrabe
131 schema:givenName Thomas
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256660416.28
133 rdf:type schema:Person
134 sg:pub.10.1007/s00018-008-8019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016079248
135 https://doi.org/10.1007/s00018-008-8019-0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/35100529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008398067
138 https://doi.org/10.1038/35100529
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1471-2105-8-382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048269594
141 https://doi.org/10.1186/1471-2105-8-382
142 rdf:type schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1077532675 schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1082424098 schema:CreativeWork
145 https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009870827
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/pro.5560040820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035847613
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/prot.1173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025461989
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/prot.20202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005455151
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1006/jmbi.1993.1489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019247667
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1006/jsbi.2000.4328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052975825
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.compbiolchem.2010.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006134147
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.immuni.2011.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052211126
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jsb.2011.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028056971
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jsb.2011.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003898203
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.tcb.2010.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028706713
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0959-440x(01)00266-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008266389
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0968-0004(00)01667-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017997133
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0968-0004(99)01426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006904715
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/jp402105j schema:sameAs https://app.dimensions.ai/details/publication/pub.1041736714
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1074/jbc.273.4.2199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003218660
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/16.5.412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490773
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/btg1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004943838
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/bti353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040648199
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btn039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053102221
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/btp163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011232850
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/btp232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039846240
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btq371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047122537
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/btr163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665096
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/bts550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037683652
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/protein/6.8.801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980919
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1101/gr.849004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016890117
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.273.5275.595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553749
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1145/130385.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379424
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/journal.pone.0002119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050589322
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.479509.6 schema:alternateName Sanford Burnham Prebys Medical Discovery Institute
206 schema:name Program in Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, 92037, La Jolla, CA, USA
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...