GSVA: gene set variation analysis for microarray and RNA-Seq data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Sonja Hänzelmann, Robert Castelo, Justin Guinney

ABSTRACT

BACKGROUND: Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. RESULTS: To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. CONCLUSIONS: GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org. More... »

PAGES

7

References to SciGraph publications

  • 2008-12. Expression-based Pathway Signature Analysis (EPSA): Mining publicly available microarray data for insight into human disease in BMC MEDICAL GENOMICS
  • 2007-10-18. A second generation human haplotype map of over 3.1 million SNPs in NATURE
  • 2009-11. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 in NATURE
  • 1985-12. Comparing partitions in JOURNAL OF CLASSIFICATION
  • 2011-06-29. Integrated genomic analyses of ovarian carcinoma in NATURE
  • 2005-03. X-inactivation profile reveals extensive variability in X-linked gene expression in females in NATURE
  • 2002-01. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia in NATURE GENETICS
  • 2008-12. Integrative analysis of RUNX1 downstream pathways and target genes in BMC GENOMICS
  • 2006-04. Pathway and gene-set activation measurement from mRNA expression data: the tissue distribution of human pathways in GENOME BIOLOGY
  • 2005-07. An integrative genomics approach to infer causal associations between gene expression and disease in NATURE GENETICS
  • 2008-07. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2007-11. A gene expression bar code for microarray data in NATURE METHODS
  • 2010-04. Understanding mechanisms underlying human gene expression variation with RNA sequencing in NATURE
  • 2003-07. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes in NATURE GENETICS
  • 2005-12. PAGE: Parametric Analysis of Gene Set Enrichment in BMC BIOINFORMATICS
  • 2005-12. Pathway level analysis of gene expression using singular value decomposition in BMC BIOINFORMATICS
  • 2006-08. Rb2/p130 and protein phosphatase 2A: key mediators of ovarian carcinoma cell growth suppression by all-trans retinoic acid in ONCOGENE
  • 2005-01. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis in NATURE GENETICS
  • 2003-06. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes in NATURE
  • 2010-02. Gene ontology analysis for RNA-seq: accounting for selection bias in GENOME BIOLOGY
  • 2004-09. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-14-7

    DOI

    http://dx.doi.org/10.1186/1471-2105-14-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022196002

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23323831


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Analysis of Variance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Leukemia, Biphenotypic, Acute", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ovarian Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Precursor Cell Lymphoblastic Leukemia-Lymphoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Statistics, Nonparametric", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Survival Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Pompeu Fabra University", 
              "id": "https://www.grid.ac/institutes/grid.5612.0", 
              "name": [
                "Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain", 
                "Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00e4nzelmann", 
            "givenName": "Sonja", 
            "id": "sg:person.01125343172.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125343172.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pompeu Fabra University", 
              "id": "https://www.grid.ac/institutes/grid.5612.0", 
              "name": [
                "Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain", 
                "Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Castelo", 
            "givenName": "Robert", 
            "id": "sg:person.01124177700.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124177700.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sage Bionetworks", 
              "id": "https://www.grid.ac/institutes/grid.430406.5", 
              "name": [
                "Sage Bionetworks, 1100 Fairview Ave N., 98109, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guinney", 
            "givenName": "Justin", 
            "id": "sg:person.011660703047.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660703047.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature10166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000736346", 
              "https://doi.org/10.1038/nature10166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002209653", 
              "https://doi.org/10.1038/nature08460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002209653", 
              "https://doi.org/10.1038/nature08460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005486377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007477207", 
              "https://doi.org/10.1038/nature03479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007477207", 
              "https://doi.org/10.1038/nature03479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007761144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/07-aoas101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008688091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2009.12.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009110560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0914005107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011637541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012602180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014377811", 
              "https://doi.org/10.1038/ng1180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014377811", 
              "https://doi.org/10.1038/ng1180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015867287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxj037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016217055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506583102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016620704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016703599", 
              "https://doi.org/10.1038/sj.onc.1209679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016703599", 
              "https://doi.org/10.1038/sj.onc.1209679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gng015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018638362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018731931", 
              "https://doi.org/10.1186/1471-2105-6-225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018731931", 
              "https://doi.org/10.1186/1471-2105-6-225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2009.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018771504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019958062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1544-6115.1418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020323654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020873540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01908075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022323983", 
              "https://doi.org/10.1007/bf01908075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-08-1067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022962210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbr049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024089379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025271948", 
              "https://doi.org/10.1186/1471-2105-6-144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025271948", 
              "https://doi.org/10.1186/1471-2105-6-144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025522417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1755-8794-1-51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027782925", 
              "https://doi.org/10.1186/1755-8794-1-51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028371840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028468408", 
              "https://doi.org/10.1038/ng765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028468408", 
              "https://doi.org/10.1038/ng765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029533609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031858368", 
              "https://doi.org/10.1038/ng1490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031858368", 
              "https://doi.org/10.1038/ng1490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032168678", 
              "https://doi.org/10.1038/nature01722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032168678", 
              "https://doi.org/10.1038/nature01722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(03)00570-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032429707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033741877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3835(01)00697-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034384229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbn001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035437139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506577102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036743422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038057639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0703736104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039491649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040370538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2006-7-10-r93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043107498", 
              "https://doi.org/10.1186/gb-2006-7-10-r93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxr054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044392328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044630803", 
              "https://doi.org/10.1038/nature08872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044630803", 
              "https://doi.org/10.1038/nature08872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045920616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046986641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047610281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048690521", 
              "https://doi.org/10.1038/ng1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048690521", 
              "https://doi.org/10.1038/ng1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048690521", 
              "https://doi.org/10.1038/ng1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280209351908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048985842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0962280209351908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048985842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050137802", 
              "https://doi.org/10.1186/1471-2164-9-363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-2-r14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050171830", 
              "https://doi.org/10.1186/gb-2010-11-2-r14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050298763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0020108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050418449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051134045", 
              "https://doi.org/10.1038/nature06258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052322560", 
              "https://doi.org/10.1038/nmeth1102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0001816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052376859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/50.3-4.315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/jasa.2011.tm10552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064200767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1544-6115.1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069289261"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "BACKGROUND: Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets.\nRESULTS: To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments.\nCONCLUSIONS: GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-14-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2699091", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "GSVA: gene set variation analysis for microarray and RNA-Seq data", 
        "pagination": "7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "69bf79e206fb27fc535e3d4ae83a21fb32b1be17e102fed2e6d547d1b9651aa8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23323831"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-14-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022196002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-14-7", 
          "https://app.dimensions.ai/details/publication/pub.1022196002"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2F1471-2105-14-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    344 TRIPLES      21 PREDICATES      103 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-14-7 schema:about N01ed932411da4bf290f1db749fe238ac
    2 N2cda2ce72616413fa2bba52d42202bf0
    3 N2ef130756eae4c9f87bcd1660f58983e
    4 N35814f6aada24f659bf5a428117d18f3
    5 N35d3c16116a1484ba906908cb6fc83b6
    6 N52319d4170d14405ae135e013c54ea11
    7 N5452245254424989bcce086862d50914
    8 N631731dc76024f91873752b392995dfd
    9 Na4f93ff2188741ca8736eb28c71f4473
    10 Nab07596860a847b98ed2a99386035424
    11 Nb714f7d480e94516be9ac80c8f5e7a10
    12 Ne10547ad6303453d8802b95faed7c33d
    13 Ne7422113cf624e91af1893897cdf846b
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Nf41ea205760043d3808330ff17573d62
    17 schema:citation sg:pub.10.1007/bf01908075
    18 sg:pub.10.1038/nature01722
    19 sg:pub.10.1038/nature03479
    20 sg:pub.10.1038/nature06258
    21 sg:pub.10.1038/nature08460
    22 sg:pub.10.1038/nature08872
    23 sg:pub.10.1038/nature10166
    24 sg:pub.10.1038/ng1180
    25 sg:pub.10.1038/ng1490
    26 sg:pub.10.1038/ng1589
    27 sg:pub.10.1038/ng765
    28 sg:pub.10.1038/nmeth.1226
    29 sg:pub.10.1038/nmeth1102
    30 sg:pub.10.1038/sj.onc.1209679
    31 sg:pub.10.1186/1471-2105-6-144
    32 sg:pub.10.1186/1471-2105-6-225
    33 sg:pub.10.1186/1471-2164-9-363
    34 sg:pub.10.1186/1755-8794-1-51
    35 sg:pub.10.1186/gb-2004-5-10-r80
    36 sg:pub.10.1186/gb-2006-7-10-r93
    37 sg:pub.10.1186/gb-2010-11-2-r14
    38 https://doi.org/10.1016/j.ccr.2009.12.020
    39 https://doi.org/10.1016/j.cell.2009.12.007
    40 https://doi.org/10.1016/s0092-8674(03)00570-1
    41 https://doi.org/10.1016/s0304-3835(01)00697-8
    42 https://doi.org/10.1073/pnas.0506577102
    43 https://doi.org/10.1073/pnas.0506580102
    44 https://doi.org/10.1073/pnas.0506583102
    45 https://doi.org/10.1073/pnas.0703736104
    46 https://doi.org/10.1073/pnas.0914005107
    47 https://doi.org/10.1093/bib/bbn001
    48 https://doi.org/10.1093/bib/bbr049
    49 https://doi.org/10.1093/bioinformatics/btg382
    50 https://doi.org/10.1093/bioinformatics/bti260
    51 https://doi.org/10.1093/bioinformatics/bti565
    52 https://doi.org/10.1093/bioinformatics/bti623
    53 https://doi.org/10.1093/bioinformatics/btl140
    54 https://doi.org/10.1093/bioinformatics/btl231
    55 https://doi.org/10.1093/bioinformatics/btl599
    56 https://doi.org/10.1093/bioinformatics/btm051
    57 https://doi.org/10.1093/bioinformatics/btp616
    58 https://doi.org/10.1093/bioinformatics/btq401
    59 https://doi.org/10.1093/bioinformatics/btr152
    60 https://doi.org/10.1093/biomet/50.3-4.315
    61 https://doi.org/10.1093/biostatistics/kxj037
    62 https://doi.org/10.1093/biostatistics/kxr054
    63 https://doi.org/10.1093/nar/gkn923
    64 https://doi.org/10.1093/nar/gkq929
    65 https://doi.org/10.1093/nar/gng015
    66 https://doi.org/10.1158/1078-0432.ccr-08-1067
    67 https://doi.org/10.1177/0962280209351908
    68 https://doi.org/10.1198/jasa.2011.tm10552
    69 https://doi.org/10.1214/07-aoas101
    70 https://doi.org/10.1371/journal.pbio.0020108
    71 https://doi.org/10.1371/journal.pcbi.1000217
    72 https://doi.org/10.1371/journal.pcbi.1002375
    73 https://doi.org/10.1371/journal.pgen.1001058
    74 https://doi.org/10.1371/journal.pgen.1001276
    75 https://doi.org/10.1371/journal.pone.0001816
    76 https://doi.org/10.2202/1544-6115.1027
    77 https://doi.org/10.2202/1544-6115.1418
    78 schema:datePublished 2013-12
    79 schema:datePublishedReg 2013-12-01
    80 schema:description BACKGROUND: Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. RESULTS: To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. CONCLUSIONS: GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
    81 schema:genre research_article
    82 schema:inLanguage en
    83 schema:isAccessibleForFree true
    84 schema:isPartOf N197c1eb1d0fb49f39835274919b8c7d3
    85 Nc784828efada40f7a821f6fdf2f08a13
    86 sg:journal.1023786
    87 schema:name GSVA: gene set variation analysis for microarray and RNA-Seq data
    88 schema:pagination 7
    89 schema:productId N2af577d41d66445dba72a7de6e8b56b1
    90 N37add8a1aa4f4bdda49bb18148340512
    91 N380d2a13bdeb423ea84a1056ff577f06
    92 N65e611dea63d4f7ba79d62e53d81160e
    93 Ndbb1e5a7e526490388f3a827bcaed684
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022196002
    95 https://doi.org/10.1186/1471-2105-14-7
    96 schema:sdDatePublished 2019-04-11T09:49
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher Nc7f100fb7f404017835438f32b3d0180
    99 schema:url https://link.springer.com/10.1186%2F1471-2105-14-7
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N01ed932411da4bf290f1db749fe238ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Female
    105 rdf:type schema:DefinedTerm
    106 N06287a04fa794ea9afda7239f09d528c rdf:first sg:person.011660703047.33
    107 rdf:rest rdf:nil
    108 N197c1eb1d0fb49f39835274919b8c7d3 schema:volumeNumber 14
    109 rdf:type schema:PublicationVolume
    110 N2af577d41d66445dba72a7de6e8b56b1 schema:name pubmed_id
    111 schema:value 23323831
    112 rdf:type schema:PropertyValue
    113 N2cda2ce72616413fa2bba52d42202bf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Ovarian Neoplasms
    115 rdf:type schema:DefinedTerm
    116 N2ef130756eae4c9f87bcd1660f58983e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Leukemia, Biphenotypic, Acute
    118 rdf:type schema:DefinedTerm
    119 N35814f6aada24f659bf5a428117d18f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Gene Expression Profiling
    121 rdf:type schema:DefinedTerm
    122 N35d3c16116a1484ba906908cb6fc83b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Survival Analysis
    124 rdf:type schema:DefinedTerm
    125 N37add8a1aa4f4bdda49bb18148340512 schema:name nlm_unique_id
    126 schema:value 100965194
    127 rdf:type schema:PropertyValue
    128 N380d2a13bdeb423ea84a1056ff577f06 schema:name readcube_id
    129 schema:value 69bf79e206fb27fc535e3d4ae83a21fb32b1be17e102fed2e6d547d1b9651aa8
    130 rdf:type schema:PropertyValue
    131 N52319d4170d14405ae135e013c54ea11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Precursor Cell Lymphoblastic Leukemia-Lymphoma
    133 rdf:type schema:DefinedTerm
    134 N5452245254424989bcce086862d50914 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Analysis of Variance
    136 rdf:type schema:DefinedTerm
    137 N631731dc76024f91873752b392995dfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Genetic Variation
    139 rdf:type schema:DefinedTerm
    140 N65e611dea63d4f7ba79d62e53d81160e schema:name doi
    141 schema:value 10.1186/1471-2105-14-7
    142 rdf:type schema:PropertyValue
    143 N918705ac3aa04c91ad3413072a966608 rdf:first sg:person.01124177700.93
    144 rdf:rest N06287a04fa794ea9afda7239f09d528c
    145 Na4f93ff2188741ca8736eb28c71f4473 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Humans
    147 rdf:type schema:DefinedTerm
    148 Nab07596860a847b98ed2a99386035424 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Oligonucleotide Array Sequence Analysis
    150 rdf:type schema:DefinedTerm
    151 Nb714f7d480e94516be9ac80c8f5e7a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Software
    153 rdf:type schema:DefinedTerm
    154 Nc784828efada40f7a821f6fdf2f08a13 schema:issueNumber 1
    155 rdf:type schema:PublicationIssue
    156 Nc7f100fb7f404017835438f32b3d0180 schema:name Springer Nature - SN SciGraph project
    157 rdf:type schema:Organization
    158 Ndbb1e5a7e526490388f3a827bcaed684 schema:name dimensions_id
    159 schema:value pub.1022196002
    160 rdf:type schema:PropertyValue
    161 Ne10547ad6303453d8802b95faed7c33d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Statistics, Nonparametric
    163 rdf:type schema:DefinedTerm
    164 Ne7422113cf624e91af1893897cdf846b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Sequence Analysis, RNA
    166 rdf:type schema:DefinedTerm
    167 Nf41ea205760043d3808330ff17573d62 rdf:first sg:person.01125343172.15
    168 rdf:rest N918705ac3aa04c91ad3413072a966608
    169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Biological Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Genetics
    174 rdf:type schema:DefinedTerm
    175 sg:grant.2699091 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-14-7
    176 rdf:type schema:MonetaryGrant
    177 sg:journal.1023786 schema:issn 1471-2105
    178 schema:name BMC Bioinformatics
    179 rdf:type schema:Periodical
    180 sg:person.01124177700.93 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
    181 schema:familyName Castelo
    182 schema:givenName Robert
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124177700.93
    184 rdf:type schema:Person
    185 sg:person.01125343172.15 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
    186 schema:familyName Hänzelmann
    187 schema:givenName Sonja
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125343172.15
    189 rdf:type schema:Person
    190 sg:person.011660703047.33 schema:affiliation https://www.grid.ac/institutes/grid.430406.5
    191 schema:familyName Guinney
    192 schema:givenName Justin
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660703047.33
    194 rdf:type schema:Person
    195 sg:pub.10.1007/bf01908075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022323983
    196 https://doi.org/10.1007/bf01908075
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature01722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032168678
    199 https://doi.org/10.1038/nature01722
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature03479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477207
    202 https://doi.org/10.1038/nature03479
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
    205 https://doi.org/10.1038/nature06258
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nature08460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002209653
    208 https://doi.org/10.1038/nature08460
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature08872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044630803
    211 https://doi.org/10.1038/nature08872
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nature10166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000736346
    214 https://doi.org/10.1038/nature10166
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/ng1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377811
    217 https://doi.org/10.1038/ng1180
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/ng1490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031858368
    220 https://doi.org/10.1038/ng1490
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/ng1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048690521
    223 https://doi.org/10.1038/ng1589
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/ng765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028468408
    226 https://doi.org/10.1038/ng765
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    229 https://doi.org/10.1038/nmeth.1226
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nmeth1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052322560
    232 https://doi.org/10.1038/nmeth1102
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/sj.onc.1209679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016703599
    235 https://doi.org/10.1038/sj.onc.1209679
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/1471-2105-6-144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271948
    238 https://doi.org/10.1186/1471-2105-6-144
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/1471-2105-6-225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018731931
    241 https://doi.org/10.1186/1471-2105-6-225
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1186/1471-2164-9-363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050137802
    244 https://doi.org/10.1186/1471-2164-9-363
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/1755-8794-1-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027782925
    247 https://doi.org/10.1186/1755-8794-1-51
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    250 https://doi.org/10.1186/gb-2004-5-10-r80
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1186/gb-2006-7-10-r93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043107498
    253 https://doi.org/10.1186/gb-2006-7-10-r93
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/gb-2010-11-2-r14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050171830
    256 https://doi.org/10.1186/gb-2010-11-2-r14
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1016/j.ccr.2009.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009110560
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1016/j.cell.2009.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018771504
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1016/s0092-8674(03)00570-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032429707
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1016/s0304-3835(01)00697-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034384229
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1073/pnas.0506577102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036743422
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1073/pnas.0506583102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016620704
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1073/pnas.0703736104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039491649
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1073/pnas.0914005107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011637541
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1093/bib/bbn001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035437139
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1093/bib/bbr049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024089379
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1093/bioinformatics/btg382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019958062
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1093/bioinformatics/bti260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007761144
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1093/bioinformatics/bti565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050298763
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1093/bioinformatics/bti623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020873540
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1093/bioinformatics/btl140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033741877
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1093/bioinformatics/btl231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046986641
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1093/bioinformatics/btl599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029533609
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1093/bioinformatics/btm051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025522417
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1093/bioinformatics/btq401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012602180
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1093/bioinformatics/btr152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015867287
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1093/biomet/50.3-4.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417298
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1093/biostatistics/kxj037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217055
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1093/biostatistics/kxr054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044392328
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1093/nar/gkn923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047610281
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1093/nar/gkq929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005486377
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1158/1078-0432.ccr-08-1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962210
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1177/0962280209351908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048985842
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1198/jasa.2011.tm10552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200767
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1214/07-aoas101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008688091
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1371/journal.pbio.0020108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050418449
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1371/journal.pcbi.1000217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040370538
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1371/journal.pcbi.1002375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045920616
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1371/journal.pgen.1001058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028371840
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1371/journal.pgen.1001276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038057639
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1371/journal.pone.0001816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052376859
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.2202/1544-6115.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289261
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.2202/1544-6115.1418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020323654
    337 rdf:type schema:CreativeWork
    338 https://www.grid.ac/institutes/grid.430406.5 schema:alternateName Sage Bionetworks
    339 schema:name Sage Bionetworks, 1100 Fairview Ave N., 98109, Seattle, Washington, USA
    340 rdf:type schema:Organization
    341 https://www.grid.ac/institutes/grid.5612.0 schema:alternateName Pompeu Fabra University
    342 schema:name Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
    343 Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
    344 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...