The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-24

AUTHORS

Panagiotis Moulos, Julie Klein, Simon Jupp, Robert Stevens, Jean-Loup Bascands, Joost P Schanstra

ABSTRACT

BACKGROUND: Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. RESULTS: In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. CONCLUSIONS: The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner. More... »

PAGES

235-235

References to SciGraph publications

  • 2010-12-29. BiologicalNetworks 2.0 - an integrative view of genome biology data in BMC BIOINFORMATICS
  • 2010-09-02. Cyst formation in the PKD2 (1-703) transgenic rat precedes deregulation of proliferation-related pathways in BMC NEPHROLOGY
  • 2006-03-17. Multiplexed protein measurement: technologies and applications of protein and antibody arrays in NATURE REVIEWS DRUG DISCOVERY
  • 2006-03-06. VANTED: A system for advanced data analysis and visualization in the context of biological networks in BMC BIOINFORMATICS
  • 2009-10-12. VANLO - Interactive visual exploration of aligned biological networks in BMC BIOINFORMATICS
  • 2012-03-22. Arena3D: visualizing time-driven phenotypic differences in biological systems in BMC BIOINFORMATICS
  • 2005-10-19. SpectralNET – an application for spectral graph analysis and visualization in BMC BIOINFORMATICS
  • 2008-11-28. A survey of visualization tools for biological network analysis in BIODATA MINING
  • 2010-05-26. Cross-platform analysis of global microRNA expression technologies in BMC GENOMICS
  • 2008-10-20. Learning biological networks: from modules to dynamics in NATURE CHEMICAL BIOLOGY
  • 2010-03-01. Visualization of omics data for systems biology in NATURE METHODS
  • 2003-02-27. Osprey: a network visualization system in GENOME BIOLOGY
  • 2009-12-08. Sequencing technologies — the next generation in NATURE REVIEWS GENETICS
  • 2008-12-21. Gene expression in early and progression phases of autosomal dominant polycystic kidney disease in BMC RESEARCH NOTES
  • 2013-03-20. The Enzyme Portal: a case study in applying user-centred design methods in bioinformatics in BMC BIOINFORMATICS
  • 2011-05-17. Developing a kidney and urinary pathway knowledge base in JOURNAL OF BIOMEDICAL SEMANTICS
  • 2004. Tulip — A Huge Graph Visualization Framework in GRAPH DRAWING SOFTWARE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-14-235

    DOI

    http://dx.doi.org/10.1186/1471-2105-14-235

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024657131

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23883183


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Models, Animal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Internet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polycystic Kidney Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Search Engine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France", 
              "id": "http://www.grid.ac/institutes/grid.15781.3a", 
              "name": [
                "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulh\u00e8s, 31432 Toulouse, France", 
                "Universit\u00e9 Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moulos", 
            "givenName": "Panagiotis", 
            "id": "sg:person.01262415460.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262415460.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klein", 
            "givenName": "Julie", 
            "id": "sg:person.012753044447.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753044447.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jupp", 
            "givenName": "Simon", 
            "id": "sg:person.01145016003.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145016003.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stevens", 
            "givenName": "Robert", 
            "id": "sg:person.0653547307.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France", 
              "id": "http://www.grid.ac/institutes/grid.15781.3a", 
              "name": [
                "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulh\u00e8s, 31432 Toulouse, France", 
                "Universit\u00e9 Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bascands", 
            "givenName": "Jean-Loup", 
            "id": "sg:person.01227572042.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227572042.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France", 
              "id": "http://www.grid.ac/institutes/grid.15781.3a", 
              "name": [
                "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulh\u00e8s, 31432 Toulouse, France", 
                "Universit\u00e9 Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schanstra", 
            "givenName": "Joost P", 
            "id": "sg:person.01366226600.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366226600.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1756-0381-1-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042456290", 
              "https://doi.org/10.1186/1756-0381-1-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005434329", 
              "https://doi.org/10.1186/1471-2105-6-260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-3-r22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011398857", 
              "https://doi.org/10.1186/gb-2003-4-3-r22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034621751", 
              "https://doi.org/10.1186/1471-2105-10-327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018416287", 
              "https://doi.org/10.1186/1471-2164-11-330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002033837", 
              "https://doi.org/10.1038/nmeth.1436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-0500-1-131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021421078", 
              "https://doi.org/10.1186/1756-0500-1-131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-1480-2-s2-s7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006101078", 
              "https://doi.org/10.1186/2041-1480-2-s2-s7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-18638-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047425397", 
              "https://doi.org/10.1007/978-3-642-18638-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2369-11-23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033257257", 
              "https://doi.org/10.1186/1471-2369-11-23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012642365", 
              "https://doi.org/10.1186/1471-2105-13-45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038053078", 
              "https://doi.org/10.1186/1471-2105-7-109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037814496", 
              "https://doi.org/10.1186/1471-2105-14-103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019955892", 
              "https://doi.org/10.1038/nchembio.122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023911485", 
              "https://doi.org/10.1038/nrg2626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026121845", 
              "https://doi.org/10.1186/1471-2105-11-610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd2006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025161606", 
              "https://doi.org/10.1038/nrd2006"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-07-24", 
        "datePublishedReg": "2013-07-24", 
        "description": "BACKGROUND: Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases.\nRESULTS: In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease.\nCONCLUSIONS: The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2105-14-235", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "interaction networks", 
          "different species", 
          "protein-protein interaction network", 
          "large interaction networks", 
          "novel biological mechanisms", 
          "high-throughput experiments", 
          "biological functions", 
          "biochemical pathways", 
          "biological network visualization", 
          "renal biology", 
          "key players", 
          "throughput experiments", 
          "functional elements", 
          "wealth of information", 
          "biological mechanisms", 
          "biology", 
          "species", 
          "polycystic kidney disease", 
          "biomolecule interactions", 
          "new hypothesis", 
          "experimental approach", 
          "novel observation", 
          "plausible hypothesis", 
          "miRNAs", 
          "biologists", 
          "calreticulin", 
          "bioinformatics", 
          "pathway", 
          "interaction", 
          "hypothesis", 
          "technological advances", 
          "network visualization", 
          "mechanism", 
          "disease", 
          "user-friendly manner", 
          "interleukin-6", 
          "manner", 
          "strong association", 
          "association", 
          "function", 
          "friendly manner", 
          "advances", 
          "exploration tool", 
          "exception", 
          "players", 
          "kidney disease", 
          "tool", 
          "data repository", 
          "data", 
          "constant technological advances", 
          "snapshot", 
          "addition", 
          "visualization package", 
          "usage examples", 
          "ongoing research", 
          "Web", 
          "network snapshots", 
          "elements", 
          "network", 
          "information", 
          "advanced functionalities", 
          "location", 
          "experiments", 
          "wealth", 
          "visualization", 
          "integration", 
          "renal location", 
          "dataset", 
          "scientists", 
          "observations", 
          "functionality", 
          "repository", 
          "results", 
          "example", 
          "approach", 
          "experiment design", 
          "exploration", 
          "research", 
          "viewers", 
          "extrapolation", 
          "usage", 
          "renal disease", 
          "package", 
          "simplicity", 
          "design", 
          "suggestions", 
          "experimental data", 
          "values", 
          "clarity", 
          "formulation", 
          "renal graft rejection", 
          "article", 
          "graft rejection", 
          "rejection", 
          "problem", 
          "multi-omics experimental approaches", 
          "multi-tiered information", 
          "KUPKB", 
          "multi-omics data repository", 
          "KUPNetViz", 
          "biological graph exploration tool", 
          "graph exploration tool", 
          "KUPKB data", 
          "multi-layered experimental data", 
          "biological network visualization packages", 
          "network visualization packages", 
          "new plausible hypotheses", 
          "adequate experiment design", 
          "value of KUPNetViz", 
          "integration of calreticulin", 
          "flexible biological network visualization", 
          "renal biologists", 
          "biological network snapshots", 
          "biological network viewer", 
          "network viewer"
        ], 
        "name": "The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases", 
        "pagination": "235-235", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024657131"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-14-235"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23883183"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-14-235", 
          "https://app.dimensions.ai/details/publication/pub.1024657131"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_585.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2105-14-235"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-235'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-235'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-235'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-14-235'


     

    This table displays all metadata directly associated to this object as RDF triples.

    315 TRIPLES      22 PREDICATES      165 URIs      140 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-14-235 schema:about N28d1101186bd466c842d5e0a857eb284
    2 N52bbead58c5840158ec54fa08c63b7e4
    3 N81e5c9de27f945238465c8074e8c2073
    4 N9fc33d29ac814133a97e2f43e5fb7a58
    5 Na4cfa63722e64a54b54ffe7bf83221bf
    6 Nb18930b6b2b24f72b2d745539a9a43c8
    7 Nbb4e093edcee4e6db07cb5a913178014
    8 Ne38a4e8932324fbbbf79b2b70ec7a41e
    9 anzsrc-for:08
    10 anzsrc-for:0806
    11 schema:author Nd4c1d910a1054d88ae938fef36dd9b66
    12 schema:citation sg:pub.10.1007/978-3-642-18638-7_5
    13 sg:pub.10.1038/nchembio.122
    14 sg:pub.10.1038/nmeth.1436
    15 sg:pub.10.1038/nrd2006
    16 sg:pub.10.1038/nrg2626
    17 sg:pub.10.1186/1471-2105-10-327
    18 sg:pub.10.1186/1471-2105-11-610
    19 sg:pub.10.1186/1471-2105-13-45
    20 sg:pub.10.1186/1471-2105-14-103
    21 sg:pub.10.1186/1471-2105-6-260
    22 sg:pub.10.1186/1471-2105-7-109
    23 sg:pub.10.1186/1471-2164-11-330
    24 sg:pub.10.1186/1471-2369-11-23
    25 sg:pub.10.1186/1756-0381-1-12
    26 sg:pub.10.1186/1756-0500-1-131
    27 sg:pub.10.1186/2041-1480-2-s2-s7
    28 sg:pub.10.1186/gb-2003-4-3-r22
    29 schema:datePublished 2013-07-24
    30 schema:datePublishedReg 2013-07-24
    31 schema:description BACKGROUND: Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. RESULTS: In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. CONCLUSIONS: The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N03c8f87ce6c54bcaa80d7a82bbe04e75
    36 N62b0fbeb32534626b2aff3d70d2d4e00
    37 sg:journal.1023786
    38 schema:keywords KUPKB
    39 KUPKB data
    40 KUPNetViz
    41 Web
    42 addition
    43 adequate experiment design
    44 advanced functionalities
    45 advances
    46 approach
    47 article
    48 association
    49 biochemical pathways
    50 bioinformatics
    51 biological functions
    52 biological graph exploration tool
    53 biological mechanisms
    54 biological network snapshots
    55 biological network viewer
    56 biological network visualization
    57 biological network visualization packages
    58 biologists
    59 biology
    60 biomolecule interactions
    61 calreticulin
    62 clarity
    63 constant technological advances
    64 data
    65 data repository
    66 dataset
    67 design
    68 different species
    69 disease
    70 elements
    71 example
    72 exception
    73 experiment design
    74 experimental approach
    75 experimental data
    76 experiments
    77 exploration
    78 exploration tool
    79 extrapolation
    80 flexible biological network visualization
    81 formulation
    82 friendly manner
    83 function
    84 functional elements
    85 functionality
    86 graft rejection
    87 graph exploration tool
    88 high-throughput experiments
    89 hypothesis
    90 information
    91 integration
    92 integration of calreticulin
    93 interaction
    94 interaction networks
    95 interleukin-6
    96 key players
    97 kidney disease
    98 large interaction networks
    99 location
    100 manner
    101 mechanism
    102 miRNAs
    103 multi-layered experimental data
    104 multi-omics data repository
    105 multi-omics experimental approaches
    106 multi-tiered information
    107 network
    108 network snapshots
    109 network viewer
    110 network visualization
    111 network visualization packages
    112 new hypothesis
    113 new plausible hypotheses
    114 novel biological mechanisms
    115 novel observation
    116 observations
    117 ongoing research
    118 package
    119 pathway
    120 plausible hypothesis
    121 players
    122 polycystic kidney disease
    123 problem
    124 protein-protein interaction network
    125 rejection
    126 renal biologists
    127 renal biology
    128 renal disease
    129 renal graft rejection
    130 renal location
    131 repository
    132 research
    133 results
    134 scientists
    135 simplicity
    136 snapshot
    137 species
    138 strong association
    139 suggestions
    140 technological advances
    141 throughput experiments
    142 tool
    143 usage
    144 usage examples
    145 user-friendly manner
    146 value of KUPNetViz
    147 values
    148 viewers
    149 visualization
    150 visualization package
    151 wealth
    152 wealth of information
    153 schema:name The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases
    154 schema:pagination 235-235
    155 schema:productId N1a031c6f6c9f4303bc7116d7a9967e30
    156 Nc0924058e3d94acebf4d002d391c6cd1
    157 Nd711ea7d2e9743ad990c1c07d032d49b
    158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024657131
    159 https://doi.org/10.1186/1471-2105-14-235
    160 schema:sdDatePublished 2021-12-01T19:28
    161 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    162 schema:sdPublisher N2c33a38ab69f454993738c29c0fb8dee
    163 schema:url https://doi.org/10.1186/1471-2105-14-235
    164 sgo:license sg:explorer/license/
    165 sgo:sdDataset articles
    166 rdf:type schema:ScholarlyArticle
    167 N03c8f87ce6c54bcaa80d7a82bbe04e75 schema:volumeNumber 14
    168 rdf:type schema:PublicationVolume
    169 N1a031c6f6c9f4303bc7116d7a9967e30 schema:name doi
    170 schema:value 10.1186/1471-2105-14-235
    171 rdf:type schema:PropertyValue
    172 N28d1101186bd466c842d5e0a857eb284 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Animals
    174 rdf:type schema:DefinedTerm
    175 N2c33a38ab69f454993738c29c0fb8dee schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 N45a6783168004b6c9a1a765a5277bee9 rdf:first sg:person.012753044447.84
    178 rdf:rest N6ad85c55d30d4a6092b6525b92571042
    179 N52bbead58c5840158ec54fa08c63b7e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Software
    181 rdf:type schema:DefinedTerm
    182 N62b0fbeb32534626b2aff3d70d2d4e00 schema:issueNumber 1
    183 rdf:type schema:PublicationIssue
    184 N6ad85c55d30d4a6092b6525b92571042 rdf:first sg:person.01145016003.29
    185 rdf:rest Nfea3f613503a47b4a5e304e73abae152
    186 N81e5c9de27f945238465c8074e8c2073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Internet
    188 rdf:type schema:DefinedTerm
    189 N8f85f1a2f4244cdfbbfe8742b2ec3762 rdf:first sg:person.01227572042.99
    190 rdf:rest Ne5ade9ce0f764641bef0d0f6dd7b09e0
    191 N9fc33d29ac814133a97e2f43e5fb7a58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Humans
    193 rdf:type schema:DefinedTerm
    194 Na4cfa63722e64a54b54ffe7bf83221bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Search Engine
    196 rdf:type schema:DefinedTerm
    197 Nb18930b6b2b24f72b2d745539a9a43c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Polycystic Kidney Diseases
    199 rdf:type schema:DefinedTerm
    200 Nbb4e093edcee4e6db07cb5a913178014 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Disease Models, Animal
    202 rdf:type schema:DefinedTerm
    203 Nc0924058e3d94acebf4d002d391c6cd1 schema:name dimensions_id
    204 schema:value pub.1024657131
    205 rdf:type schema:PropertyValue
    206 Nd4c1d910a1054d88ae938fef36dd9b66 rdf:first sg:person.01262415460.55
    207 rdf:rest N45a6783168004b6c9a1a765a5277bee9
    208 Nd711ea7d2e9743ad990c1c07d032d49b schema:name pubmed_id
    209 schema:value 23883183
    210 rdf:type schema:PropertyValue
    211 Ne38a4e8932324fbbbf79b2b70ec7a41e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Computational Biology
    213 rdf:type schema:DefinedTerm
    214 Ne5ade9ce0f764641bef0d0f6dd7b09e0 rdf:first sg:person.01366226600.19
    215 rdf:rest rdf:nil
    216 Nfea3f613503a47b4a5e304e73abae152 rdf:first sg:person.0653547307.62
    217 rdf:rest N8f85f1a2f4244cdfbbfe8742b2ec3762
    218 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Information and Computing Sciences
    220 rdf:type schema:DefinedTerm
    221 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    222 schema:name Information Systems
    223 rdf:type schema:DefinedTerm
    224 sg:journal.1023786 schema:issn 1471-2105
    225 schema:name BMC Bioinformatics
    226 schema:publisher Springer Nature
    227 rdf:type schema:Periodical
    228 sg:person.01145016003.29 schema:affiliation grid-institutes:None
    229 schema:familyName Jupp
    230 schema:givenName Simon
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145016003.29
    232 rdf:type schema:Person
    233 sg:person.01227572042.99 schema:affiliation grid-institutes:grid.15781.3a
    234 schema:familyName Bascands
    235 schema:givenName Jean-Loup
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227572042.99
    237 rdf:type schema:Person
    238 sg:person.01262415460.55 schema:affiliation grid-institutes:grid.15781.3a
    239 schema:familyName Moulos
    240 schema:givenName Panagiotis
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262415460.55
    242 rdf:type schema:Person
    243 sg:person.012753044447.84 schema:affiliation grid-institutes:None
    244 schema:familyName Klein
    245 schema:givenName Julie
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753044447.84
    247 rdf:type schema:Person
    248 sg:person.01366226600.19 schema:affiliation grid-institutes:grid.15781.3a
    249 schema:familyName Schanstra
    250 schema:givenName Joost P
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366226600.19
    252 rdf:type schema:Person
    253 sg:person.0653547307.62 schema:affiliation grid-institutes:None
    254 schema:familyName Stevens
    255 schema:givenName Robert
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
    257 rdf:type schema:Person
    258 sg:pub.10.1007/978-3-642-18638-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047425397
    259 https://doi.org/10.1007/978-3-642-18638-7_5
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nchembio.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019955892
    262 https://doi.org/10.1038/nchembio.122
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nmeth.1436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002033837
    265 https://doi.org/10.1038/nmeth.1436
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nrd2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025161606
    268 https://doi.org/10.1038/nrd2006
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
    271 https://doi.org/10.1038/nrg2626
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/1471-2105-10-327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034621751
    274 https://doi.org/10.1186/1471-2105-10-327
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/1471-2105-11-610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026121845
    277 https://doi.org/10.1186/1471-2105-11-610
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/1471-2105-13-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012642365
    280 https://doi.org/10.1186/1471-2105-13-45
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1186/1471-2105-14-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037814496
    283 https://doi.org/10.1186/1471-2105-14-103
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1186/1471-2105-6-260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005434329
    286 https://doi.org/10.1186/1471-2105-6-260
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1186/1471-2105-7-109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038053078
    289 https://doi.org/10.1186/1471-2105-7-109
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1186/1471-2164-11-330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018416287
    292 https://doi.org/10.1186/1471-2164-11-330
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1186/1471-2369-11-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033257257
    295 https://doi.org/10.1186/1471-2369-11-23
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1186/1756-0381-1-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042456290
    298 https://doi.org/10.1186/1756-0381-1-12
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1186/1756-0500-1-131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021421078
    301 https://doi.org/10.1186/1756-0500-1-131
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/2041-1480-2-s2-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006101078
    304 https://doi.org/10.1186/2041-1480-2-s2-s7
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/gb-2003-4-3-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011398857
    307 https://doi.org/10.1186/gb-2003-4-3-r22
    308 rdf:type schema:CreativeWork
    309 grid-institutes:None schema:alternateName School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom
    310 schema:name School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL United Kingdom
    311 rdf:type schema:Organization
    312 grid-institutes:grid.15781.3a schema:alternateName Université Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France
    313 schema:name Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulhès, 31432 Toulouse, France
    314 Université Toulouse III Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France
    315 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...