Fold change and p-value cutoffs significantly alter microarray interpretations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Mark R Dalman, Anthony Deeter, Gayathri Nimishakavi, Zhong-Hui Duan

ABSTRACT

BACKGROUND: As context is important to gene expression, so is the preprocessing of microarray to transcriptomics. Microarray data suffers from several normalization and significance problems. Arbitrary fold change (FC) cut-offs of >2 and significance p-values of <0.02 lead data collection to look only at genes which vary wildly amongst other genes. Therefore, questions arise as to whether the biology or the statistical cutoff are more important within the interpretation. In this paper, we reanalyzed a zebrafish (D. rerio) microarray data set using GeneSpring and different differential gene expression cut-offs and found the data interpretation was drastically different. Furthermore, despite the advances in microarray technology, the array captures a large portion of genes known but yet still leaving large voids in the number of genes assayed, such as leptin a pleiotropic hormone directly related to hypoxia-induced angiogenesis. RESULTS: The data strongly suggests that the number of differentially expressed genes is more up-regulated than down-regulated, with many genes indicating conserved signalling to previously known functions. Recapitulated data from Marques et al. (2008) was similar but surprisingly different with some genes showing unexpected signalling which may be a product of tissue (heart) or that the intended response was transient. CONCLUSIONS: Our analyses suggest that based on the chosen statistical or fold change cut-off; microarray analysis can provide essentially more than one answer, implying data interpretation as more of an art than a science, with follow up gene expression studies a must. Furthermore, gene chip annotation and development needs to maintain pace with not only new genomes being sequenced but also novel genes that are crucial to the overall gene chips interpretation. More... »

PAGES

s11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-13-s2-s11

DOI

http://dx.doi.org/10.1186/1471-2105-13-s2-s11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028272461

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22536862


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Akron", 
          "id": "https://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Biology and program in Integrative Bioscience, University of Akron, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalman", 
        "givenName": "Mark R", 
        "id": "sg:person.012657765377.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657765377.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Akron", 
          "id": "https://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Computer Science, University of Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deeter", 
        "givenName": "Anthony", 
        "id": "sg:person.01021352531.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021352531.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Akron", 
          "id": "https://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Computer Science, University of Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nimishakavi", 
        "givenName": "Gayathri", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Akron", 
          "id": "https://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Computer Science, University of Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Zhong-Hui", 
        "id": "sg:person.01205725271.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205725271.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-5-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001519225", 
          "https://doi.org/10.1186/1471-2164-5-42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1535-6108(03)00029-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007194252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00080.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007956463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10142-008-0082-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004695", 
          "https://doi.org/10.1007/s10142-008-0082-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10142-008-0082-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004695", 
          "https://doi.org/10.1007/s10142-008-0082-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)14232-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014286456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)14232-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014286456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/beheco/ark016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015477984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017349746", 
          "https://doi.org/10.1038/nrg1749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017349746", 
          "https://doi.org/10.1038/nrg1749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(02)02665-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020073866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023550918", 
          "https://doi.org/10.1186/1471-2105-7-469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024464977", 
          "https://doi.org/10.1186/1471-2105-7-359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00498250600621627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025946321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbcan.2007.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027558322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040037878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045472514", 
          "https://doi.org/10.1186/1471-2105-11-48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045472514", 
          "https://doi.org/10.1186/1471-2105-11-48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1068996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gerona/56.2.b52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051418203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00360-007-0201-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053333382", 
          "https://doi.org/10.1007/s00360-007-0201-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpregu.00673.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063196863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14712598.4.5.741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067589471"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: As context is important to gene expression, so is the preprocessing of microarray to transcriptomics. Microarray data suffers from several normalization and significance problems. Arbitrary fold change (FC) cut-offs of >2 and significance p-values of <0.02 lead data collection to look only at genes which vary wildly amongst other genes. Therefore, questions arise as to whether the biology or the statistical cutoff are more important within the interpretation. In this paper, we reanalyzed a zebrafish (D. rerio) microarray data set using GeneSpring and different differential gene expression cut-offs and found the data interpretation was drastically different. Furthermore, despite the advances in microarray technology, the array captures a large portion of genes known but yet still leaving large voids in the number of genes assayed, such as leptin a pleiotropic hormone directly related to hypoxia-induced angiogenesis.\nRESULTS: The data strongly suggests that the number of differentially expressed genes is more up-regulated than down-regulated, with many genes indicating conserved signalling to previously known functions. Recapitulated data from Marques et al. (2008) was similar but surprisingly different with some genes showing unexpected signalling which may be a product of tissue (heart) or that the intended response was transient.\nCONCLUSIONS: Our analyses suggest that based on the chosen statistical or fold change cut-off; microarray analysis can provide essentially more than one answer, implying data interpretation as more of an art than a science, with follow up gene expression studies a must. Furthermore, gene chip annotation and development needs to maintain pace with not only new genomes being sequenced but also novel genes that are crucial to the overall gene chips interpretation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-13-s2-s11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Fold change and p-value cutoffs significantly alter microarray interpretations", 
    "pagination": "s11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86af23f6a70cc05429856761369341fa22b9eadefd68733e0c285b805bb2c131"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22536862"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-13-s2-s11"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028272461"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-13-s2-s11", 
      "https://app.dimensions.ai/details/publication/pub.1028272461"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-13-S2-S11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s2-s11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s2-s11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s2-s11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s2-s11'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      53 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-13-s2-s11 schema:about N2e5786e244c449b7a7b32af3d76b394e
2 N30bbc10eef104a6199a2289c938cc2e2
3 Nc2b61c22de784f51b5613fbfd77a94d1
4 Nc7e0e42febc948acbd0f2e57c1290399
5 anzsrc-for:06
6 anzsrc-for:0604
7 schema:author N3bc4eda36c8c45e481f596455c95070f
8 schema:citation sg:pub.10.1007/s00360-007-0201-4
9 sg:pub.10.1007/s10142-008-0082-y
10 sg:pub.10.1038/nbt1239
11 sg:pub.10.1038/nrg1749
12 sg:pub.10.1186/1471-2105-11-48
13 sg:pub.10.1186/1471-2105-7-359
14 sg:pub.10.1186/1471-2105-7-469
15 sg:pub.10.1186/1471-2164-5-42
16 https://doi.org/10.1016/j.bbcan.2007.06.003
17 https://doi.org/10.1016/s0140-6736(03)14232-8
18 https://doi.org/10.1016/s0168-9525(02)02665-3
19 https://doi.org/10.1016/s1535-6108(03)00029-1
20 https://doi.org/10.1080/00498250600621627
21 https://doi.org/10.1093/beheco/ark016
22 https://doi.org/10.1093/bioinformatics/btp053
23 https://doi.org/10.1093/gerona/56.2.b52
24 https://doi.org/10.1126/science.1068996
25 https://doi.org/10.1152/ajpregu.00673.2001
26 https://doi.org/10.1152/physiolgenomics.00080.2003
27 https://doi.org/10.1517/14712598.4.5.741
28 schema:datePublished 2012-12
29 schema:datePublishedReg 2012-12-01
30 schema:description BACKGROUND: As context is important to gene expression, so is the preprocessing of microarray to transcriptomics. Microarray data suffers from several normalization and significance problems. Arbitrary fold change (FC) cut-offs of >2 and significance p-values of <0.02 lead data collection to look only at genes which vary wildly amongst other genes. Therefore, questions arise as to whether the biology or the statistical cutoff are more important within the interpretation. In this paper, we reanalyzed a zebrafish (D. rerio) microarray data set using GeneSpring and different differential gene expression cut-offs and found the data interpretation was drastically different. Furthermore, despite the advances in microarray technology, the array captures a large portion of genes known but yet still leaving large voids in the number of genes assayed, such as leptin a pleiotropic hormone directly related to hypoxia-induced angiogenesis. RESULTS: The data strongly suggests that the number of differentially expressed genes is more up-regulated than down-regulated, with many genes indicating conserved signalling to previously known functions. Recapitulated data from Marques et al. (2008) was similar but surprisingly different with some genes showing unexpected signalling which may be a product of tissue (heart) or that the intended response was transient. CONCLUSIONS: Our analyses suggest that based on the chosen statistical or fold change cut-off; microarray analysis can provide essentially more than one answer, implying data interpretation as more of an art than a science, with follow up gene expression studies a must. Furthermore, gene chip annotation and development needs to maintain pace with not only new genomes being sequenced but also novel genes that are crucial to the overall gene chips interpretation.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N808213dbc258418e9a8d018f32933fe3
35 N992e9ccda53c4994bc13e075fb346a14
36 sg:journal.1023786
37 schema:name Fold change and p-value cutoffs significantly alter microarray interpretations
38 schema:pagination s11
39 schema:productId N1bf57d6259924092a1c9e3a49ee48c8a
40 N7306abcd9b4c4eb5a7022a2b328f70c5
41 N92e86e66b09d402cb859a0cfbdec14bd
42 Nb3081c93e2db45c5a0faebf9cd768e9e
43 Nd4b44fba163c495c926442ca7774e7e1
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028272461
45 https://doi.org/10.1186/1471-2105-13-s2-s11
46 schema:sdDatePublished 2019-04-10T13:14
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N6b3570fd75dc460cbccc37ef57aeefe7
49 schema:url http://link.springer.com/10.1186/1471-2105-13-S2-S11
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1bf57d6259924092a1c9e3a49ee48c8a schema:name doi
54 schema:value 10.1186/1471-2105-13-s2-s11
55 rdf:type schema:PropertyValue
56 N287a3a74c08c4f3bb41ee492fa038b0b schema:affiliation https://www.grid.ac/institutes/grid.265881.0
57 schema:familyName Nimishakavi
58 schema:givenName Gayathri
59 rdf:type schema:Person
60 N2e5786e244c449b7a7b32af3d76b394e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Gene Expression Regulation
62 rdf:type schema:DefinedTerm
63 N30bbc10eef104a6199a2289c938cc2e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Gene Expression Profiling
65 rdf:type schema:DefinedTerm
66 N3a793e244cc34e53bce2693e20841e86 rdf:first sg:person.01205725271.20
67 rdf:rest rdf:nil
68 N3bc4eda36c8c45e481f596455c95070f rdf:first sg:person.012657765377.23
69 rdf:rest N897160aa85a843d9ba45332902a833aa
70 N6b3570fd75dc460cbccc37ef57aeefe7 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N7306abcd9b4c4eb5a7022a2b328f70c5 schema:name pubmed_id
73 schema:value 22536862
74 rdf:type schema:PropertyValue
75 N808213dbc258418e9a8d018f32933fe3 schema:volumeNumber 13
76 rdf:type schema:PublicationVolume
77 N897160aa85a843d9ba45332902a833aa rdf:first sg:person.01021352531.43
78 rdf:rest Ndb0021c305eb478998aa16d0a6519e6f
79 N92e86e66b09d402cb859a0cfbdec14bd schema:name dimensions_id
80 schema:value pub.1028272461
81 rdf:type schema:PropertyValue
82 N992e9ccda53c4994bc13e075fb346a14 schema:issueNumber Suppl 2
83 rdf:type schema:PublicationIssue
84 Nb3081c93e2db45c5a0faebf9cd768e9e schema:name readcube_id
85 schema:value 86af23f6a70cc05429856761369341fa22b9eadefd68733e0c285b805bb2c131
86 rdf:type schema:PropertyValue
87 Nc2b61c22de784f51b5613fbfd77a94d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Oligonucleotide Array Sequence Analysis
89 rdf:type schema:DefinedTerm
90 Nc7e0e42febc948acbd0f2e57c1290399 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Data Interpretation, Statistical
92 rdf:type schema:DefinedTerm
93 Nd4b44fba163c495c926442ca7774e7e1 schema:name nlm_unique_id
94 schema:value 100965194
95 rdf:type schema:PropertyValue
96 Ndb0021c305eb478998aa16d0a6519e6f rdf:first N287a3a74c08c4f3bb41ee492fa038b0b
97 rdf:rest N3a793e244cc34e53bce2693e20841e86
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
102 schema:name Genetics
103 rdf:type schema:DefinedTerm
104 sg:journal.1023786 schema:issn 1471-2105
105 schema:name BMC Bioinformatics
106 rdf:type schema:Periodical
107 sg:person.01021352531.43 schema:affiliation https://www.grid.ac/institutes/grid.265881.0
108 schema:familyName Deeter
109 schema:givenName Anthony
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021352531.43
111 rdf:type schema:Person
112 sg:person.01205725271.20 schema:affiliation https://www.grid.ac/institutes/grid.265881.0
113 schema:familyName Duan
114 schema:givenName Zhong-Hui
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205725271.20
116 rdf:type schema:Person
117 sg:person.012657765377.23 schema:affiliation https://www.grid.ac/institutes/grid.265881.0
118 schema:familyName Dalman
119 schema:givenName Mark R
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657765377.23
121 rdf:type schema:Person
122 sg:pub.10.1007/s00360-007-0201-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053333382
123 https://doi.org/10.1007/s00360-007-0201-4
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10142-008-0082-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012004695
126 https://doi.org/10.1007/s10142-008-0082-y
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nbt1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875102
129 https://doi.org/10.1038/nbt1239
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nrg1749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017349746
132 https://doi.org/10.1038/nrg1749
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/1471-2105-11-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045472514
135 https://doi.org/10.1186/1471-2105-11-48
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/1471-2105-7-359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024464977
138 https://doi.org/10.1186/1471-2105-7-359
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1471-2105-7-469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023550918
141 https://doi.org/10.1186/1471-2105-7-469
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/1471-2164-5-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001519225
144 https://doi.org/10.1186/1471-2164-5-42
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.bbcan.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027558322
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0140-6736(03)14232-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014286456
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0168-9525(02)02665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020073866
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s1535-6108(03)00029-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007194252
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/00498250600621627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025946321
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/beheco/ark016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015477984
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btp053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040037878
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/gerona/56.2.b52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051418203
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1068996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334082
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1152/ajpregu.00673.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063196863
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1152/physiolgenomics.00080.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007956463
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1517/14712598.4.5.741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067589471
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.265881.0 schema:alternateName University of Akron
171 schema:name Department of Biology and program in Integrative Bioscience, University of Akron, Akron, OH, USA
172 Department of Computer Science, University of Akron, OH, USA
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...