MALDI imaging mass spectrometry: statistical data analysis and current computational challenges View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-11-05

AUTHORS

Theodore Alexandrov

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) imaging mass spectrometry, also called MALDI-imaging, is a label-free bioanalytical technique used for spatially-resolved chemical analysis of a sample. Usually, MALDI-imaging is exploited for analysis of a specially prepared tissue section thaw mounted onto glass slide. A tremendous development of the MALDI-imaging technique has been observed during the last decade. Currently, it is one of the most promising innovative measurement techniques in biochemistry and a powerful and versatile tool for spatially-resolved chemical analysis of diverse sample types ranging from biological and plant tissues to bio and polymer thin films. In this paper, we outline computational methods for analyzing MALDI-imaging data with the emphasis on multivariate statistical methods, discuss their pros and cons, and give recommendations on their application. The methods of unsupervised data mining as well as supervised classification methods for biomarker discovery are elucidated. We also present a high-throughput computational pipeline for interpretation of MALDI-imaging data using spatial segmentation. Finally, we discuss current challenges associated with the statistical analysis of MALDI-imaging data. More... »

PAGES

s11

References to SciGraph publications

  • 2010. Semi-supervised Learning of Sparse Linear Models in Mass Spectral Imaging in PATTERN RECOGNITION IN BIOINFORMATICS
  • 2011-04-26. Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2010-07-05. Tutorial: Multivariate Statistical Treatment of Imaging Data for Clinical Biomarker Discovery in MASS SPECTROMETRY IMAGING
  • 2011-08-08. Imaging mass spectrometry in microbiology in NATURE REVIEWS MICROBIOLOGY
  • 2011-04-12. Normalization in MALDI-TOF imaging datasets of proteins: practical considerations in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2007-10. Clathrate nanostructures for mass spectrometry in NATURE
  • 2009-01-06. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis in BMC BIOINFORMATICS
  • 2011-03-17. Development of imaging mass spectrometry (IMS) dataset extractor software, IMS convolution in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2009-11-08. Translating metabolic exchange with imaging mass spectrometry in NATURE CHEMICAL BIOLOGY
  • 2011-07-30. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications in HISTOCHEMISTRY AND CELL BIOLOGY
  • 2001-04. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues in NATURE MEDICINE
  • 2009-06. Imaging mass spectrometry: Hype or hope? in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-13-s16-s11

    DOI

    http://dx.doi.org/10.1186/1471-2105-13-s16-s11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006449244

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23176142


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Data Interpretation, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 1, 28359, Bremen, Germany", 
                "Steinbeis Innovation Center for Scientific Computing in Life Sciences, Richard-Dehmel-Str. 69, 28211, Bremen, Germany", 
                "Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alexandrov", 
            "givenName": "Theodore", 
            "id": "sg:person.01204640152.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204640152.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nchembio.252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005440796", 
              "https://doi.org/10.1038/nchembio.252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-011-4778-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012603392", 
              "https://doi.org/10.1007/s00216-011-4778-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047121036", 
              "https://doi.org/10.1038/nature06195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-011-5020-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025489182", 
              "https://doi.org/10.1007/s00216-011-5020-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00418-011-0843-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000776055", 
              "https://doi.org/10.1007/s00418-011-0843-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-60761-746-4_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025715282", 
              "https://doi.org/10.1007/978-1-60761-746-4_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/86573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006375277", 
              "https://doi.org/10.1038/86573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041575797", 
              "https://doi.org/10.1186/1471-2105-10-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000898720", 
              "https://doi.org/10.1038/nrmicro2634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-16001-1_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043427593", 
              "https://doi.org/10.1007/978-3-642-16001-1_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-011-4929-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017802972", 
              "https://doi.org/10.1007/s00216-011-4929-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jasms.2009.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003644364", 
              "https://doi.org/10.1016/j.jasms.2009.01.011"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-11-05", 
        "datePublishedReg": "2012-11-05", 
        "description": "Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) imaging mass spectrometry, also called MALDI-imaging, is a label-free bioanalytical technique used for spatially-resolved chemical analysis of a sample. Usually, MALDI-imaging is exploited for analysis of a specially prepared tissue section thaw mounted onto glass slide. A tremendous development of the MALDI-imaging technique has been observed during the last decade. Currently, it is one of the most promising innovative measurement techniques in biochemistry and a powerful and versatile tool for spatially-resolved chemical analysis of diverse sample types ranging from biological and plant tissues to bio and polymer thin films. In this paper, we outline computational methods for analyzing MALDI-imaging data with the emphasis on multivariate statistical methods, discuss their pros and cons, and give recommendations on their application. The methods of unsupervised data mining as well as supervised classification methods for biomarker discovery are elucidated. We also present a high-throughput computational pipeline for interpretation of MALDI-imaging data using spatial segmentation. Finally, we discuss current challenges associated with the statistical analysis of MALDI-imaging data.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2105-13-s16-s11", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 16", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "mass spectrometry", 
          "chemical analysis", 
          "MALDI imaging", 
          "laser desorption/ionization time", 
          "desorption/ionization time", 
          "bioanalytical techniques", 
          "MALDI", 
          "high-throughput computational pipeline", 
          "ionization time", 
          "thin films", 
          "spectrometry", 
          "glass slides", 
          "versatile tool", 
          "computational methods", 
          "diverse sample types", 
          "current challenges", 
          "tremendous development", 
          "current computational challenges", 
          "biomarker discovery", 
          "sample types", 
          "bio", 
          "films", 
          "multivariate statistical methods", 
          "statistical data analysis", 
          "computational challenges", 
          "statistical methods", 
          "method", 
          "technique", 
          "biochemistry", 
          "matrix", 
          "discovery", 
          "plant tissues", 
          "applications", 
          "analysis", 
          "measurement techniques", 
          "samples", 
          "last decade", 
          "statistical analysis", 
          "innovative measurement techniques", 
          "unsupervised data mining", 
          "spatial segmentation", 
          "data analysis", 
          "challenges", 
          "emphasis", 
          "time", 
          "types", 
          "pros", 
          "slides", 
          "classification method", 
          "computational pipeline", 
          "development", 
          "decades", 
          "data mining", 
          "data", 
          "tool", 
          "supervised classification method", 
          "interpretation", 
          "flight", 
          "segmentation", 
          "thaw", 
          "cons", 
          "pipeline", 
          "paper", 
          "tissue", 
          "mining", 
          "recommendations"
        ], 
        "name": "MALDI imaging mass spectrometry: statistical data analysis and current computational challenges", 
        "pagination": "s11", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006449244"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-13-s16-s11"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23176142"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-13-s16-s11", 
          "https://app.dimensions.ai/details/publication/pub.1006449244"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_558.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2105-13-s16-s11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s16-s11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s16-s11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s16-s11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s16-s11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      108 URIs      88 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-13-s16-s11 schema:about N71eabfda9fdc483eadf211c64112f82a
    2 Na92812af125c401abdcd479b79461a58
    3 Naafa86a3a35a4f7691de0854828443db
    4 Nc3e97662eed6491bbe693cd4f0230552
    5 Nf0212c133e77462e8605b41183025fdb
    6 anzsrc-for:01
    7 anzsrc-for:0104
    8 schema:author Na1f459258dd9456586fb09c1869283ce
    9 schema:citation sg:pub.10.1007/978-1-60761-746-4_22
    10 sg:pub.10.1007/978-3-642-16001-1_28
    11 sg:pub.10.1007/s00216-011-4778-9
    12 sg:pub.10.1007/s00216-011-4929-z
    13 sg:pub.10.1007/s00216-011-5020-5
    14 sg:pub.10.1007/s00418-011-0843-x
    15 sg:pub.10.1016/j.jasms.2009.01.011
    16 sg:pub.10.1038/86573
    17 sg:pub.10.1038/nature06195
    18 sg:pub.10.1038/nchembio.252
    19 sg:pub.10.1038/nrmicro2634
    20 sg:pub.10.1186/1471-2105-10-4
    21 schema:datePublished 2012-11-05
    22 schema:datePublishedReg 2012-11-05
    23 schema:description Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) imaging mass spectrometry, also called MALDI-imaging, is a label-free bioanalytical technique used for spatially-resolved chemical analysis of a sample. Usually, MALDI-imaging is exploited for analysis of a specially prepared tissue section thaw mounted onto glass slide. A tremendous development of the MALDI-imaging technique has been observed during the last decade. Currently, it is one of the most promising innovative measurement techniques in biochemistry and a powerful and versatile tool for spatially-resolved chemical analysis of diverse sample types ranging from biological and plant tissues to bio and polymer thin films. In this paper, we outline computational methods for analyzing MALDI-imaging data with the emphasis on multivariate statistical methods, discuss their pros and cons, and give recommendations on their application. The methods of unsupervised data mining as well as supervised classification methods for biomarker discovery are elucidated. We also present a high-throughput computational pipeline for interpretation of MALDI-imaging data using spatial segmentation. Finally, we discuss current challenges associated with the statistical analysis of MALDI-imaging data.
    24 schema:genre article
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N02a16668e0bf479aa3d8c65aefec6a0c
    27 Nd21a0440bc0b4662b1cf5e00bcd9e5a3
    28 sg:journal.1023786
    29 schema:keywords MALDI
    30 MALDI imaging
    31 analysis
    32 applications
    33 bio
    34 bioanalytical techniques
    35 biochemistry
    36 biomarker discovery
    37 challenges
    38 chemical analysis
    39 classification method
    40 computational challenges
    41 computational methods
    42 computational pipeline
    43 cons
    44 current challenges
    45 current computational challenges
    46 data
    47 data analysis
    48 data mining
    49 decades
    50 desorption/ionization time
    51 development
    52 discovery
    53 diverse sample types
    54 emphasis
    55 films
    56 flight
    57 glass slides
    58 high-throughput computational pipeline
    59 innovative measurement techniques
    60 interpretation
    61 ionization time
    62 laser desorption/ionization time
    63 last decade
    64 mass spectrometry
    65 matrix
    66 measurement techniques
    67 method
    68 mining
    69 multivariate statistical methods
    70 paper
    71 pipeline
    72 plant tissues
    73 pros
    74 recommendations
    75 sample types
    76 samples
    77 segmentation
    78 slides
    79 spatial segmentation
    80 spectrometry
    81 statistical analysis
    82 statistical data analysis
    83 statistical methods
    84 supervised classification method
    85 technique
    86 thaw
    87 thin films
    88 time
    89 tissue
    90 tool
    91 tremendous development
    92 types
    93 unsupervised data mining
    94 versatile tool
    95 schema:name MALDI imaging mass spectrometry: statistical data analysis and current computational challenges
    96 schema:pagination s11
    97 schema:productId N392913318e494802b0cdbb5168b5716c
    98 N4c740f110a9e4ba8bfd5792d3f89ffc4
    99 N81dfa6152d06447b813ca4f91dbf45b9
    100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006449244
    101 https://doi.org/10.1186/1471-2105-13-s16-s11
    102 schema:sdDatePublished 2022-09-02T15:55
    103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    104 schema:sdPublisher N711d4fbf43224ebc9689156f7283377f
    105 schema:url https://doi.org/10.1186/1471-2105-13-s16-s11
    106 sgo:license sg:explorer/license/
    107 sgo:sdDataset articles
    108 rdf:type schema:ScholarlyArticle
    109 N02a16668e0bf479aa3d8c65aefec6a0c schema:volumeNumber 13
    110 rdf:type schema:PublicationVolume
    111 N392913318e494802b0cdbb5168b5716c schema:name dimensions_id
    112 schema:value pub.1006449244
    113 rdf:type schema:PropertyValue
    114 N4c740f110a9e4ba8bfd5792d3f89ffc4 schema:name doi
    115 schema:value 10.1186/1471-2105-13-s16-s11
    116 rdf:type schema:PropertyValue
    117 N711d4fbf43224ebc9689156f7283377f schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N71eabfda9fdc483eadf211c64112f82a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Computational Biology
    121 rdf:type schema:DefinedTerm
    122 N81dfa6152d06447b813ca4f91dbf45b9 schema:name pubmed_id
    123 schema:value 23176142
    124 rdf:type schema:PropertyValue
    125 Na1f459258dd9456586fb09c1869283ce rdf:first sg:person.01204640152.10
    126 rdf:rest rdf:nil
    127 Na92812af125c401abdcd479b79461a58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Biomarkers
    129 rdf:type schema:DefinedTerm
    130 Naafa86a3a35a4f7691de0854828443db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Data Interpretation, Statistical
    132 rdf:type schema:DefinedTerm
    133 Nc3e97662eed6491bbe693cd4f0230552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Cluster Analysis
    135 rdf:type schema:DefinedTerm
    136 Nd21a0440bc0b4662b1cf5e00bcd9e5a3 schema:issueNumber Suppl 16
    137 rdf:type schema:PublicationIssue
    138 Nf0212c133e77462e8605b41183025fdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Mathematical Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Statistics
    146 rdf:type schema:DefinedTerm
    147 sg:journal.1023786 schema:issn 1471-2105
    148 schema:name BMC Bioinformatics
    149 schema:publisher Springer Nature
    150 rdf:type schema:Periodical
    151 sg:person.01204640152.10 schema:affiliation grid-institutes:grid.266100.3
    152 schema:familyName Alexandrov
    153 schema:givenName Theodore
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204640152.10
    155 rdf:type schema:Person
    156 sg:pub.10.1007/978-1-60761-746-4_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025715282
    157 https://doi.org/10.1007/978-1-60761-746-4_22
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-3-642-16001-1_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043427593
    160 https://doi.org/10.1007/978-3-642-16001-1_28
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00216-011-4778-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012603392
    163 https://doi.org/10.1007/s00216-011-4778-9
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00216-011-4929-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017802972
    166 https://doi.org/10.1007/s00216-011-4929-z
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00216-011-5020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025489182
    169 https://doi.org/10.1007/s00216-011-5020-5
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00418-011-0843-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000776055
    172 https://doi.org/10.1007/s00418-011-0843-x
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1016/j.jasms.2009.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003644364
    175 https://doi.org/10.1016/j.jasms.2009.01.011
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/86573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006375277
    178 https://doi.org/10.1038/86573
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nature06195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047121036
    181 https://doi.org/10.1038/nature06195
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nchembio.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005440796
    184 https://doi.org/10.1038/nchembio.252
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nrmicro2634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000898720
    187 https://doi.org/10.1038/nrmicro2634
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/1471-2105-10-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041575797
    190 https://doi.org/10.1186/1471-2105-10-4
    191 rdf:type schema:CreativeWork
    192 grid-institutes:grid.266100.3 schema:alternateName Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
    193 schema:name Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 1, 28359, Bremen, Germany
    194 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
    195 Steinbeis Innovation Center for Scientific Computing in Life Sciences, Richard-Dehmel-Str. 69, 28211, Bremen, Germany
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...