A semantic web framework to integrate cancer omics data with biological knowledge View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Matthew E Holford, James P McCusker, Kei-Hoi Cheung, Michael Krauthammer

ABSTRACT

BACKGROUND: The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. RESULTS: For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. CONCLUSIONS: We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily. More... »

PAGES

s10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-13-s1-s10

DOI

http://dx.doi.org/10.1186/1471-2105-13-s1-s10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021619930

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22373303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Azacitidine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Database Management Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Ontology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melanoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semantics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Translational Medical Research", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 300 George Street, Suite 501, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holford", 
        "givenName": "Matthew E", 
        "id": "sg:person.0603733462.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603733462.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University, 310 Cedar Street LH 108, PO Box 208023, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCusker", 
        "givenName": "James P", 
        "id": "sg:person.01230424175.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230424175.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Computer Science, Yale University, PO Box 208285, 06520-8285, New Haven, CT, USA", 
            "Center for Medical Informatics, Yale University, 300 George Street, Suite 501, 06511, New Haven, CT, USA", 
            "Department of Genetics, Yale University, 333 Cedar Street, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Kei-Hoi", 
        "id": "sg:person.01007571514.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007571514.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 300 George Street, Suite 501, 06511, New Haven, CT, USA", 
            "Department of Pathology, Yale University, 310 Cedar Street LH 108, PO Box 208023, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krauthammer", 
        "givenName": "Michael", 
        "id": "sg:person.01336516000.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336516000.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-02408-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000751206", 
          "https://doi.org/10.1007/978-3-642-02408-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02408-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000751206", 
          "https://doi.org/10.1007/978-3-642-02408-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0004563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006011269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011605987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-1480-2-s2-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013483045", 
          "https://doi.org/10.1186/2041-1480-2-s2-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.websem.2007.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013524367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-5-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015285227", 
          "https://doi.org/10.1186/gb-2005-6-5-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.080721.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015322609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39718-2_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019938329", 
          "https://doi.org/10.1007/978-3-540-39718-2_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39718-2_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019938329", 
          "https://doi.org/10.1007/978-3-540-39718-2_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6754-9_5381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021687099", 
          "https://doi.org/10.1007/978-1-4020-6754-9_5381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa041588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022156409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023443907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025045870", 
          "https://doi.org/10.1007/978-3-540-89704-0_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025045870", 
          "https://doi.org/10.1007/978-3-540-89704-0_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-5-r44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026484271", 
          "https://doi.org/10.1186/gb-2005-6-5-r44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001312", 
          "https://doi.org/10.1038/nbt1346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470976777.ch6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028956678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030920077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032664612", 
          "https://doi.org/10.1186/1471-2105-11-255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17819-1_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035019883", 
          "https://doi.org/10.1007/978-3-642-17819-1_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17819-1_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035019883", 
          "https://doi.org/10.1007/978-3-642-17819-1_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.091447.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035364220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-3-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035717233", 
          "https://doi.org/10.1186/1755-8794-3-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.23463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037938105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038655804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bult.70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039170595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781444338386.wbeah05088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040156807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2008.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041223857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npre.2010.5391.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042925523", 
          "https://doi.org/10.1038/npre.2010.5391.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043405886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-s10-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045360774", 
          "https://doi.org/10.1186/1471-2105-10-s10-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-s1-s51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046664006", 
          "https://doi.org/10.1186/1471-2105-12-s1-s51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052669813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2005.1616521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077368286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/cin.s2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078923717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/cin.s2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078923717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/grid.2004.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093703364"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge.\nRESULTS: For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent.\nCONCLUSIONS: We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-13-s1-s10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2681175", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "A semantic web framework to integrate cancer omics data with biological knowledge", 
    "pagination": "s10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6702168b21ecc30d3b7f35b011a502b0f4af1f47321a55e2fb6328218302929c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22373303"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-13-s1-s10"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021619930"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-13-s1-s10", 
      "https://app.dimensions.ai/details/publication/pub.1021619930"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-13-S1-S10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s1-s10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s1-s10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s1-s10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-s1-s10'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      77 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-13-s1-s10 schema:about N070048d4a8b94581a1b5a949be52096e
2 N07fc4efe54174ac08e51198cc4feff8a
3 N38c77ad497634cbcb3db0a9d92996269
4 N4740f4a5ebf541b7af29f05646caa60f
5 N4ea7cb3d36bf45969348b5b56e857613
6 N57bbd22850014960a72c34807ee42f2c
7 N6273220e4c574ba5abe02dba1c2c3c14
8 N7c65e421f09f4491ae04f333cf2f1fde
9 Na50ddddffb1d483cbc3f2bc477082556
10 Nc1c307b2b8da417d8cd2990917baf9e1
11 Ndb48a69991054dca8011c2ebd55de9e5
12 Ned02572c733c4ffaa6d1d550eccbc480
13 Nfd369c0fd52c4dffaf5de28b2a0188b2
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N14e1e4ef2ce54e1384bbd407a33b2ce9
17 schema:citation sg:pub.10.1007/978-1-4020-6754-9_5381
18 sg:pub.10.1007/978-3-540-39718-2_42
19 sg:pub.10.1007/978-3-540-89704-0_30
20 sg:pub.10.1007/978-3-642-02408-5_9
21 sg:pub.10.1007/978-3-642-17819-1_15
22 sg:pub.10.1038/415530a
23 sg:pub.10.1038/75556
24 sg:pub.10.1038/nbt1346
25 sg:pub.10.1038/npre.2010.5391.1
26 sg:pub.10.1186/1471-2105-10-s10-s2
27 sg:pub.10.1186/1471-2105-11-255
28 sg:pub.10.1186/1471-2105-12-s1-s51
29 sg:pub.10.1186/1755-8794-3-4
30 sg:pub.10.1186/2041-1480-2-s2-s3
31 sg:pub.10.1186/gb-2005-6-5-r44
32 sg:pub.10.1186/gb-2005-6-5-r46
33 https://doi.org/10.1002/9780470976777.ch6
34 https://doi.org/10.1002/9781444338386.wbeah05088
35 https://doi.org/10.1002/bult.70
36 https://doi.org/10.1002/cncr.23463
37 https://doi.org/10.1016/j.jbi.2008.02.006
38 https://doi.org/10.1016/j.jbi.2008.03.004
39 https://doi.org/10.1016/j.websem.2007.03.004
40 https://doi.org/10.1056/nejmoa041588
41 https://doi.org/10.1093/bioinformatics/btg335
42 https://doi.org/10.1093/bioinformatics/bth465
43 https://doi.org/10.1093/bioinformatics/bth905
44 https://doi.org/10.1093/nar/gkp354
45 https://doi.org/10.1101/gr.080721.108
46 https://doi.org/10.1101/gr.091447.109
47 https://doi.org/10.1109/grid.2004.53
48 https://doi.org/10.1109/iembs.2005.1616521
49 https://doi.org/10.1371/journal.pone.0000339
50 https://doi.org/10.1371/journal.pone.0004563
51 https://doi.org/10.4137/cin.s2335
52 schema:datePublished 2012-12
53 schema:datePublishedReg 2012-12-01
54 schema:description BACKGROUND: The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. RESULTS: For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. CONCLUSIONS: We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf Naf9201f1cae54974a73267352473789c
59 Nb1e81b0a50954972b6f6007c7d22a206
60 sg:journal.1023786
61 schema:name A semantic web framework to integrate cancer omics data with biological knowledge
62 schema:pagination s10
63 schema:productId N388886bf6fac46d3960de80d5531067f
64 N7b6bf2c867894a74b4fa7133cfd2d89a
65 N9d558edfe1ff4cc1b0a7f1a81eeadd7c
66 Nc8215b5ae8d84d7a9ebdb4a3a19ea9af
67 Ncdcffd4eb87b4a4c87b2947d8aae364a
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021619930
69 https://doi.org/10.1186/1471-2105-13-s1-s10
70 schema:sdDatePublished 2019-04-10T13:05
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nb9fdcbc8e50e48838c1dfd24f2fb0382
73 schema:url http://link.springer.com/10.1186/1471-2105-13-S1-S10
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N070048d4a8b94581a1b5a949be52096e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Humans
79 rdf:type schema:DefinedTerm
80 N07fc4efe54174ac08e51198cc4feff8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Transcription Factors
82 rdf:type schema:DefinedTerm
83 N14e1e4ef2ce54e1384bbd407a33b2ce9 rdf:first sg:person.0603733462.66
84 rdf:rest Ncb3b021daa604882bb859514ddfbcac9
85 N388886bf6fac46d3960de80d5531067f schema:name dimensions_id
86 schema:value pub.1021619930
87 rdf:type schema:PropertyValue
88 N38c77ad497634cbcb3db0a9d92996269 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Gene Expression Profiling
90 rdf:type schema:DefinedTerm
91 N4740f4a5ebf541b7af29f05646caa60f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Semantics
93 rdf:type schema:DefinedTerm
94 N4ea7cb3d36bf45969348b5b56e857613 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Gene Regulatory Networks
96 rdf:type schema:DefinedTerm
97 N57bbd22850014960a72c34807ee42f2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Epigenomics
99 rdf:type schema:DefinedTerm
100 N6273220e4c574ba5abe02dba1c2c3c14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Azacitidine
102 rdf:type schema:DefinedTerm
103 N7b6bf2c867894a74b4fa7133cfd2d89a schema:name readcube_id
104 schema:value 6702168b21ecc30d3b7f35b011a502b0f4af1f47321a55e2fb6328218302929c
105 rdf:type schema:PropertyValue
106 N7c65e421f09f4491ae04f333cf2f1fde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Drug Resistance, Neoplasm
108 rdf:type schema:DefinedTerm
109 N9d558edfe1ff4cc1b0a7f1a81eeadd7c schema:name nlm_unique_id
110 schema:value 100965194
111 rdf:type schema:PropertyValue
112 Na50ddddffb1d483cbc3f2bc477082556 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Translational Medical Research
114 rdf:type schema:DefinedTerm
115 Naf9201f1cae54974a73267352473789c schema:issueNumber Suppl 1
116 rdf:type schema:PublicationIssue
117 Nb1e81b0a50954972b6f6007c7d22a206 schema:volumeNumber 13
118 rdf:type schema:PublicationVolume
119 Nb9fdcbc8e50e48838c1dfd24f2fb0382 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nc1c307b2b8da417d8cd2990917baf9e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Melanoma
123 rdf:type schema:DefinedTerm
124 Nc4fed6bfe5d04146a4aded6c83dfbffb rdf:first sg:person.01007571514.24
125 rdf:rest Ncdf7077b69d7414e943781389cfb8182
126 Nc8215b5ae8d84d7a9ebdb4a3a19ea9af schema:name pubmed_id
127 schema:value 22373303
128 rdf:type schema:PropertyValue
129 Ncb3b021daa604882bb859514ddfbcac9 rdf:first sg:person.01230424175.13
130 rdf:rest Nc4fed6bfe5d04146a4aded6c83dfbffb
131 Ncdcffd4eb87b4a4c87b2947d8aae364a schema:name doi
132 schema:value 10.1186/1471-2105-13-s1-s10
133 rdf:type schema:PropertyValue
134 Ncdf7077b69d7414e943781389cfb8182 rdf:first sg:person.01336516000.48
135 rdf:rest rdf:nil
136 Ndb48a69991054dca8011c2ebd55de9e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Internet
138 rdf:type schema:DefinedTerm
139 Ned02572c733c4ffaa6d1d550eccbc480 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Database Management Systems
141 rdf:type schema:DefinedTerm
142 Nfd369c0fd52c4dffaf5de28b2a0188b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Gene Ontology
144 rdf:type schema:DefinedTerm
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biochemistry and Cell Biology
150 rdf:type schema:DefinedTerm
151 sg:grant.2440220 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-13-s1-s10
152 rdf:type schema:MonetaryGrant
153 sg:grant.2681175 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-13-s1-s10
154 rdf:type schema:MonetaryGrant
155 sg:journal.1023786 schema:issn 1471-2105
156 schema:name BMC Bioinformatics
157 rdf:type schema:Periodical
158 sg:person.01007571514.24 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
159 schema:familyName Cheung
160 schema:givenName Kei-Hoi
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007571514.24
162 rdf:type schema:Person
163 sg:person.01230424175.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
164 schema:familyName McCusker
165 schema:givenName James P
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230424175.13
167 rdf:type schema:Person
168 sg:person.01336516000.48 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
169 schema:familyName Krauthammer
170 schema:givenName Michael
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336516000.48
172 rdf:type schema:Person
173 sg:person.0603733462.66 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
174 schema:familyName Holford
175 schema:givenName Matthew E
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603733462.66
177 rdf:type schema:Person
178 sg:pub.10.1007/978-1-4020-6754-9_5381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021687099
179 https://doi.org/10.1007/978-1-4020-6754-9_5381
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/978-3-540-39718-2_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019938329
182 https://doi.org/10.1007/978-3-540-39718-2_42
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/978-3-540-89704-0_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025045870
185 https://doi.org/10.1007/978-3-540-89704-0_30
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/978-3-642-02408-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000751206
188 https://doi.org/10.1007/978-3-642-02408-5_9
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/978-3-642-17819-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035019883
191 https://doi.org/10.1007/978-3-642-17819-1_15
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
194 https://doi.org/10.1038/415530a
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
197 https://doi.org/10.1038/75556
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
200 https://doi.org/10.1038/nbt1346
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/npre.2010.5391.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042925523
203 https://doi.org/10.1038/npre.2010.5391.1
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1471-2105-10-s10-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045360774
206 https://doi.org/10.1186/1471-2105-10-s10-s2
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2105-11-255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032664612
209 https://doi.org/10.1186/1471-2105-11-255
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1471-2105-12-s1-s51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046664006
212 https://doi.org/10.1186/1471-2105-12-s1-s51
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1755-8794-3-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035717233
215 https://doi.org/10.1186/1755-8794-3-4
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/2041-1480-2-s2-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013483045
218 https://doi.org/10.1186/2041-1480-2-s2-s3
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/gb-2005-6-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026484271
221 https://doi.org/10.1186/gb-2005-6-5-r44
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/gb-2005-6-5-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015285227
224 https://doi.org/10.1186/gb-2005-6-5-r46
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/9780470976777.ch6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028956678
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/9781444338386.wbeah05088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040156807
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/bult.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039170595
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/cncr.23463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037938105
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.jbi.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041223857
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.jbi.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030920077
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.websem.2007.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013524367
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/btg335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011605987
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/bth465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038655804
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/bioinformatics/bth905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052669813
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/gkp354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043405886
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1101/gr.080721.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015322609
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1101/gr.091447.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035364220
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1109/grid.2004.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093703364
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1109/iembs.2005.1616521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077368286
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pone.0000339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023443907
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pone.0004563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006011269
261 rdf:type schema:CreativeWork
262 https://doi.org/10.4137/cin.s2335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078923717
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
265 schema:name Center for Medical Informatics, Yale University, 300 George Street, Suite 501, 06511, New Haven, CT, USA
266 Department of Computer Science, Yale University, PO Box 208285, 06520-8285, New Haven, CT, USA
267 Department of Genetics, Yale University, 333 Cedar Street, 06520, New Haven, CT, USA
268 Department of Pathology, Yale University, 310 Cedar Street LH 108, PO Box 208023, 06520, New Haven, CT, USA
269 Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 300 George Street, Suite 501, 06511, New Haven, CT, USA
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...