Ontology type: schema:ScholarlyArticle Open Access: True
2012-04-23
AUTHORSJohn Boyle, Richard Kreisberg, Ryan Bressler, Sarah Killcoyne
ABSTRACTBackgroundAs the volume, complexity and diversity of the information that scientists work with on a daily basis continues to rise, so too does the requirement for new analytic software. The analytic software must solve the dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use. Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this knowledge to data sets that are continually growing in a field that is rapidly changing.ResultsThis paper discusses an approach to the development of visual mining tools capable of supporting the mining of massive data collections used in systems biology research, and also discusses lessons that have been learned providing tools for both local researchers and the wider community. Example tools were developed which are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases represent large repositories of raw and processed experiment data generated to support the identification of biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of hundreds of genomes, to explore the variations across different cancer genomes and cancer types.ConclusionsThe mining of massive repositories of biological data requires the development of new tools and techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new meaning and make sense at scales from single samples to entire populations. Providing linked task specific views that allow a user to start from points of interest (from diseases to single genes) enables targeted exploration of thousands of spectra and genomes. As the composition of the atlases changes, and our understanding of the biology increase, new tasks will continually arise. It is therefore important to provide the means to make the data available in a suitable manner in as short a time as possible. We have done this through the use of common visualization workflows, into which we rapidly deploy visual tools. These visualizations follow common metaphors where possible to assist users in understanding the displayed data. Rapid development of tools and task specific views allows researchers to mine large-scale data almost as quickly as it is produced. Ultimately these visual tools enable new inferences, new analyses and further refinement of the large scale data being provided in atlases such as PeptideAtlas and The Cancer Genome Atlas. More... »
PAGES58
http://scigraph.springernature.com/pub.10.1186/1471-2105-13-58
DOIhttp://dx.doi.org/10.1186/1471-2105-13-58
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008009070
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/22524279
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Colonic Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Data Mining",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genomics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Glioblastoma",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mass Spectrometry",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ovarian Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Proteomics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.64212.33",
"name": [
"Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Boyle",
"givenName": "John",
"id": "sg:person.01110033460.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110033460.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.64212.33",
"name": [
"Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Kreisberg",
"givenName": "Richard",
"id": "sg:person.0736074277.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736074277.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.64212.33",
"name": [
"Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Bressler",
"givenName": "Ryan",
"id": "sg:person.01043002526.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043002526.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.64212.33",
"name": [
"Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Killcoyne",
"givenName": "Sarah",
"id": "sg:person.01274460411.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274460411.86"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nature07385",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039570773",
"https://doi.org/10.1038/nature07385"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1755-8794-3-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049012532",
"https://doi.org/10.1186/1755-8794-3-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-9-295",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047116914",
"https://doi.org/10.1186/1471-2105-9-295"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-10-79",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039759522",
"https://doi.org/10.1186/1471-2105-10-79"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt0410-322",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038433746",
"https://doi.org/10.1038/nbt0410-322"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-12-78",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019495389",
"https://doi.org/10.1186/1471-2105-12-78"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1741-7007-5-33",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004081265",
"https://doi.org/10.1186/1741-7007-5-33"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1755-8417-2-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039522645",
"https://doi.org/10.1186/1755-8417-2-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.1363",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020581697",
"https://doi.org/10.1038/nmeth.1363"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-04-23",
"datePublishedReg": "2012-04-23",
"description": "BackgroundAs the volume, complexity and diversity of the information that scientists work with on a daily basis continues to rise, so too does the requirement for new analytic software. The analytic software must solve the dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use. Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this knowledge to data sets that are continually growing in a field that is rapidly changing.ResultsThis paper discusses an approach to the development of visual mining tools capable of supporting the mining of massive data collections used in systems biology research, and also discusses lessons that have been learned providing tools for both local researchers and the wider community. Example tools were developed which are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases represent large repositories of raw and processed experiment data generated to support the identification of biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of hundreds of genomes, to explore the variations across different cancer genomes and cancer types.ConclusionsThe mining of massive repositories of biological data requires the development of new tools and techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new meaning and make sense at scales from single samples to entire populations. Providing linked task specific views that allow a user to start from points of interest (from diseases to single genes) enables targeted exploration of thousands of spectra and genomes. As the composition of the atlases changes, and our understanding of the biology increase, new tasks will continually arise. It is therefore important to provide the means to make the data available in a suitable manner in as short a time as possible. We have done this through the use of common visualization workflows, into which we rapidly deploy visual tools. These visualizations follow common metaphors where possible to assist users in understanding the displayed data. Rapid development of tools and task specific views allows researchers to mine large-scale data almost as quickly as it is produced. Ultimately these visual tools enable new inferences, new analyses and further refinement of the large scale data being provided in atlases such as PeptideAtlas and The Cancer Genome Atlas.",
"genre": "article",
"id": "sg:pub.10.1186/1471-2105-13-58",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2346398",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2480242",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2440532",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2696331",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2520375",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1023786",
"issn": [
"1471-2105"
],
"name": "BMC Bioinformatics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "13"
}
],
"keywords": [
"large-scale data",
"visual mining",
"analytics software",
"visual tool",
"massive data collection",
"data sets",
"visualization workflows",
"specific view",
"information visualization",
"mining tools",
"points of interest",
"exploration of thousands",
"complex data",
"large repositories",
"massive repositories",
"mine data",
"systems biology research",
"bioinformatics research",
"example tool",
"visual exploration",
"direct manipulation",
"new tasks",
"mining",
"interactive analysis",
"scale data",
"rapid development",
"Cancer Genome Atlas",
"users",
"cancer genomes",
"biological data",
"repository",
"biology research",
"genomic characterization",
"software",
"genome",
"suitable manner",
"Genome Atlas",
"visualization",
"data collection",
"mass spectrometry experiments",
"tool",
"requirements",
"identification of biomarkers",
"atlases",
"protein assays",
"data atlases",
"set",
"cancer types",
"new tool",
"workflow",
"researchers",
"new inferences",
"thousands",
"spectrometry experiments",
"daily basis",
"task",
"reasoning",
"mass spectrometry",
"complexity",
"exploration",
"genomics",
"proteomics",
"common metaphors",
"PeptideAtlas",
"data",
"wider community",
"experiment data",
"diversity",
"information",
"high levels",
"inference",
"challenges",
"view",
"collection",
"research",
"assays",
"single sample",
"technique",
"hundreds",
"development",
"solution",
"atlas",
"identification",
"knowledge",
"metaphor",
"need",
"experiments",
"further refinement",
"population",
"method",
"analysis",
"scientists",
"refinement",
"interaction",
"characterization",
"community",
"new analysis",
"manipulation",
"manner",
"spectrometry",
"entire population",
"variation",
"interest",
"composition",
"understanding",
"specialists",
"point",
"time",
"lessons",
"biomarkers",
"field",
"use",
"cancer",
"sense",
"basis",
"levels",
"means",
"scientific reasoning",
"changes",
"new meaning",
"types",
"meaning",
"increase",
"local researchers",
"volume",
"scale",
"dichotomy",
"samples",
"approach",
"spectra",
"problem",
"paper"
],
"name": "Methods for visual mining of genomic and proteomic data atlases",
"pagination": "58",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008009070"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1471-2105-13-58"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"22524279"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1471-2105-13-58",
"https://app.dimensions.ai/details/publication/pub.1008009070"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_562.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/1471-2105-13-58"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-58'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-58'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-58'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-58'
This table displays all metadata directly associated to this object as RDF triples.
320 TRIPLES
22 PREDICATES
182 URIs
161 LITERALS
18 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/1471-2105-13-58 | schema:about | N14bc93c626324b2392b67cd84f3473c6 |
2 | ″ | ″ | N2392315f14e7477499a0f3a23be90acf |
3 | ″ | ″ | N278e3c4119314be98afb4a947f4be7fb |
4 | ″ | ″ | N2bd0e03f0e844fd8881d406a3605064e |
5 | ″ | ″ | N4fd3861c96514865b42afd8992f8d1fc |
6 | ″ | ″ | N62640bfb90a846d899dfd155f89aeb2f |
7 | ″ | ″ | Na02eb12d591c4927aa1c964ff23ce272 |
8 | ″ | ″ | Nb61b6ef950764bc19d4718e15b551c96 |
9 | ″ | ″ | Nbeaad5fa5a33404fb19faa316b8ee098 |
10 | ″ | ″ | Nc6034fb9f2a14ff882595935b347fb21 |
11 | ″ | ″ | Ncb62e3211b894c0da4a3d8ab29e6bc6d |
12 | ″ | ″ | anzsrc-for:06 |
13 | ″ | ″ | anzsrc-for:0601 |
14 | ″ | ″ | anzsrc-for:0604 |
15 | ″ | ″ | anzsrc-for:08 |
16 | ″ | ″ | anzsrc-for:0801 |
17 | ″ | ″ | anzsrc-for:0806 |
18 | ″ | schema:author | N41caa07499234ee0bbde7e1d65540caf |
19 | ″ | schema:citation | sg:pub.10.1038/nature07385 |
20 | ″ | ″ | sg:pub.10.1038/nbt0410-322 |
21 | ″ | ″ | sg:pub.10.1038/nmeth.1363 |
22 | ″ | ″ | sg:pub.10.1186/1471-2105-10-79 |
23 | ″ | ″ | sg:pub.10.1186/1471-2105-12-78 |
24 | ″ | ″ | sg:pub.10.1186/1471-2105-9-295 |
25 | ″ | ″ | sg:pub.10.1186/1741-7007-5-33 |
26 | ″ | ″ | sg:pub.10.1186/1755-8417-2-3 |
27 | ″ | ″ | sg:pub.10.1186/1755-8794-3-7 |
28 | ″ | schema:datePublished | 2012-04-23 |
29 | ″ | schema:datePublishedReg | 2012-04-23 |
30 | ″ | schema:description | BackgroundAs the volume, complexity and diversity of the information that scientists work with on a daily basis continues to rise, so too does the requirement for new analytic software. The analytic software must solve the dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use. Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this knowledge to data sets that are continually growing in a field that is rapidly changing.ResultsThis paper discusses an approach to the development of visual mining tools capable of supporting the mining of massive data collections used in systems biology research, and also discusses lessons that have been learned providing tools for both local researchers and the wider community. Example tools were developed which are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases represent large repositories of raw and processed experiment data generated to support the identification of biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of hundreds of genomes, to explore the variations across different cancer genomes and cancer types.ConclusionsThe mining of massive repositories of biological data requires the development of new tools and techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new meaning and make sense at scales from single samples to entire populations. Providing linked task specific views that allow a user to start from points of interest (from diseases to single genes) enables targeted exploration of thousands of spectra and genomes. As the composition of the atlases changes, and our understanding of the biology increase, new tasks will continually arise. It is therefore important to provide the means to make the data available in a suitable manner in as short a time as possible. We have done this through the use of common visualization workflows, into which we rapidly deploy visual tools. These visualizations follow common metaphors where possible to assist users in understanding the displayed data. Rapid development of tools and task specific views allows researchers to mine large-scale data almost as quickly as it is produced. Ultimately these visual tools enable new inferences, new analyses and further refinement of the large scale data being provided in atlases such as PeptideAtlas and The Cancer Genome Atlas. |
31 | ″ | schema:genre | article |
32 | ″ | schema:inLanguage | en |
33 | ″ | schema:isAccessibleForFree | true |
34 | ″ | schema:isPartOf | N0370ba7cb0db42c2b12561057362ebd2 |
35 | ″ | ″ | Nc27a0c4ebcb942d88b3a579a7af0d2dd |
36 | ″ | ″ | sg:journal.1023786 |
37 | ″ | schema:keywords | Cancer Genome Atlas |
38 | ″ | ″ | Genome Atlas |
39 | ″ | ″ | PeptideAtlas |
40 | ″ | ″ | analysis |
41 | ″ | ″ | analytics software |
42 | ″ | ″ | approach |
43 | ″ | ″ | assays |
44 | ″ | ″ | atlas |
45 | ″ | ″ | atlases |
46 | ″ | ″ | basis |
47 | ″ | ″ | bioinformatics research |
48 | ″ | ″ | biological data |
49 | ″ | ″ | biology research |
50 | ″ | ″ | biomarkers |
51 | ″ | ″ | cancer |
52 | ″ | ″ | cancer genomes |
53 | ″ | ″ | cancer types |
54 | ″ | ″ | challenges |
55 | ″ | ″ | changes |
56 | ″ | ″ | characterization |
57 | ″ | ″ | collection |
58 | ″ | ″ | common metaphors |
59 | ″ | ″ | community |
60 | ″ | ″ | complex data |
61 | ″ | ″ | complexity |
62 | ″ | ″ | composition |
63 | ″ | ″ | daily basis |
64 | ″ | ″ | data |
65 | ″ | ″ | data atlases |
66 | ″ | ″ | data collection |
67 | ″ | ″ | data sets |
68 | ″ | ″ | development |
69 | ″ | ″ | dichotomy |
70 | ″ | ″ | direct manipulation |
71 | ″ | ″ | diversity |
72 | ″ | ″ | entire population |
73 | ″ | ″ | example tool |
74 | ″ | ″ | experiment data |
75 | ″ | ″ | experiments |
76 | ″ | ″ | exploration |
77 | ″ | ″ | exploration of thousands |
78 | ″ | ″ | field |
79 | ″ | ″ | further refinement |
80 | ″ | ″ | genome |
81 | ″ | ″ | genomic characterization |
82 | ″ | ″ | genomics |
83 | ″ | ″ | high levels |
84 | ″ | ″ | hundreds |
85 | ″ | ″ | identification |
86 | ″ | ″ | identification of biomarkers |
87 | ″ | ″ | increase |
88 | ″ | ″ | inference |
89 | ″ | ″ | information |
90 | ″ | ″ | information visualization |
91 | ″ | ″ | interaction |
92 | ″ | ″ | interactive analysis |
93 | ″ | ″ | interest |
94 | ″ | ″ | knowledge |
95 | ″ | ″ | large repositories |
96 | ″ | ″ | large-scale data |
97 | ″ | ″ | lessons |
98 | ″ | ″ | levels |
99 | ″ | ″ | local researchers |
100 | ″ | ″ | manipulation |
101 | ″ | ″ | manner |
102 | ″ | ″ | mass spectrometry |
103 | ″ | ″ | mass spectrometry experiments |
104 | ″ | ″ | massive data collection |
105 | ″ | ″ | massive repositories |
106 | ″ | ″ | meaning |
107 | ″ | ″ | means |
108 | ″ | ″ | metaphor |
109 | ″ | ″ | method |
110 | ″ | ″ | mine data |
111 | ″ | ″ | mining |
112 | ″ | ″ | mining tools |
113 | ″ | ″ | need |
114 | ″ | ″ | new analysis |
115 | ″ | ″ | new inferences |
116 | ″ | ″ | new meaning |
117 | ″ | ″ | new tasks |
118 | ″ | ″ | new tool |
119 | ″ | ″ | paper |
120 | ″ | ″ | point |
121 | ″ | ″ | points of interest |
122 | ″ | ″ | population |
123 | ″ | ″ | problem |
124 | ″ | ″ | protein assays |
125 | ″ | ″ | proteomics |
126 | ″ | ″ | rapid development |
127 | ″ | ″ | reasoning |
128 | ″ | ″ | refinement |
129 | ″ | ″ | repository |
130 | ″ | ″ | requirements |
131 | ″ | ″ | research |
132 | ″ | ″ | researchers |
133 | ″ | ″ | samples |
134 | ″ | ″ | scale |
135 | ″ | ″ | scale data |
136 | ″ | ″ | scientific reasoning |
137 | ″ | ″ | scientists |
138 | ″ | ″ | sense |
139 | ″ | ″ | set |
140 | ″ | ″ | single sample |
141 | ″ | ″ | software |
142 | ″ | ″ | solution |
143 | ″ | ″ | specialists |
144 | ″ | ″ | specific view |
145 | ″ | ″ | spectra |
146 | ″ | ″ | spectrometry |
147 | ″ | ″ | spectrometry experiments |
148 | ″ | ″ | suitable manner |
149 | ″ | ″ | systems biology research |
150 | ″ | ″ | task |
151 | ″ | ″ | technique |
152 | ″ | ″ | thousands |
153 | ″ | ″ | time |
154 | ″ | ″ | tool |
155 | ″ | ″ | types |
156 | ″ | ″ | understanding |
157 | ″ | ″ | use |
158 | ″ | ″ | users |
159 | ″ | ″ | variation |
160 | ″ | ″ | view |
161 | ″ | ″ | visual exploration |
162 | ″ | ″ | visual mining |
163 | ″ | ″ | visual tool |
164 | ″ | ″ | visualization |
165 | ″ | ″ | visualization workflows |
166 | ″ | ″ | volume |
167 | ″ | ″ | wider community |
168 | ″ | ″ | workflow |
169 | ″ | schema:name | Methods for visual mining of genomic and proteomic data atlases |
170 | ″ | schema:pagination | 58 |
171 | ″ | schema:productId | N81ede7e44d2b47df83976d65f9f0ed9a |
172 | ″ | ″ | Nafad9f0008fd47a8a6d7cc74140fce13 |
173 | ″ | ″ | Neb91dcf6d1fb467dbc43c7e4d3626a68 |
174 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008009070 |
175 | ″ | ″ | https://doi.org/10.1186/1471-2105-13-58 |
176 | ″ | schema:sdDatePublished | 2022-06-01T22:09 |
177 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
178 | ″ | schema:sdPublisher | N22694442f997492e8c803895d877bcac |
179 | ″ | schema:url | https://doi.org/10.1186/1471-2105-13-58 |
180 | ″ | sgo:license | sg:explorer/license/ |
181 | ″ | sgo:sdDataset | articles |
182 | ″ | rdf:type | schema:ScholarlyArticle |
183 | N0370ba7cb0db42c2b12561057362ebd2 | schema:issueNumber | 1 |
184 | ″ | rdf:type | schema:PublicationIssue |
185 | N14bc93c626324b2392b67cd84f3473c6 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
186 | ″ | schema:name | Mass Spectrometry |
187 | ″ | rdf:type | schema:DefinedTerm |
188 | N22694442f997492e8c803895d877bcac | schema:name | Springer Nature - SN SciGraph project |
189 | ″ | rdf:type | schema:Organization |
190 | N2392315f14e7477499a0f3a23be90acf | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
191 | ″ | schema:name | Neoplasms |
192 | ″ | rdf:type | schema:DefinedTerm |
193 | N278e3c4119314be98afb4a947f4be7fb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
194 | ″ | schema:name | Humans |
195 | ″ | rdf:type | schema:DefinedTerm |
196 | N2bd0e03f0e844fd8881d406a3605064e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
197 | ″ | schema:name | Proteomics |
198 | ″ | rdf:type | schema:DefinedTerm |
199 | N41caa07499234ee0bbde7e1d65540caf | rdf:first | sg:person.01110033460.10 |
200 | ″ | rdf:rest | N5d7eed66016f49afb0f2ab18b45d9b7a |
201 | N4fd3861c96514865b42afd8992f8d1fc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
202 | ″ | schema:name | Glioblastoma |
203 | ″ | rdf:type | schema:DefinedTerm |
204 | N5d7eed66016f49afb0f2ab18b45d9b7a | rdf:first | sg:person.0736074277.36 |
205 | ″ | rdf:rest | Ne9291bbf80b14fe3aa32bd0b48f99e02 |
206 | N62640bfb90a846d899dfd155f89aeb2f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
207 | ″ | schema:name | Female |
208 | ″ | rdf:type | schema:DefinedTerm |
209 | N7364b66546b7495395837d584bd53e3d | rdf:first | sg:person.01274460411.86 |
210 | ″ | rdf:rest | rdf:nil |
211 | N81ede7e44d2b47df83976d65f9f0ed9a | schema:name | pubmed_id |
212 | ″ | schema:value | 22524279 |
213 | ″ | rdf:type | schema:PropertyValue |
214 | Na02eb12d591c4927aa1c964ff23ce272 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
215 | ″ | schema:name | Ovarian Neoplasms |
216 | ″ | rdf:type | schema:DefinedTerm |
217 | Nafad9f0008fd47a8a6d7cc74140fce13 | schema:name | doi |
218 | ″ | schema:value | 10.1186/1471-2105-13-58 |
219 | ″ | rdf:type | schema:PropertyValue |
220 | Nb61b6ef950764bc19d4718e15b551c96 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
221 | ″ | schema:name | Software |
222 | ″ | rdf:type | schema:DefinedTerm |
223 | Nbeaad5fa5a33404fb19faa316b8ee098 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
224 | ″ | schema:name | Genomics |
225 | ″ | rdf:type | schema:DefinedTerm |
226 | Nc27a0c4ebcb942d88b3a579a7af0d2dd | schema:volumeNumber | 13 |
227 | ″ | rdf:type | schema:PublicationVolume |
228 | Nc6034fb9f2a14ff882595935b347fb21 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
229 | ″ | schema:name | Data Mining |
230 | ″ | rdf:type | schema:DefinedTerm |
231 | Ncb62e3211b894c0da4a3d8ab29e6bc6d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
232 | ″ | schema:name | Colonic Neoplasms |
233 | ″ | rdf:type | schema:DefinedTerm |
234 | Ne9291bbf80b14fe3aa32bd0b48f99e02 | rdf:first | sg:person.01043002526.05 |
235 | ″ | rdf:rest | N7364b66546b7495395837d584bd53e3d |
236 | Neb91dcf6d1fb467dbc43c7e4d3626a68 | schema:name | dimensions_id |
237 | ″ | schema:value | pub.1008009070 |
238 | ″ | rdf:type | schema:PropertyValue |
239 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
240 | ″ | schema:name | Biological Sciences |
241 | ″ | rdf:type | schema:DefinedTerm |
242 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
243 | ″ | schema:name | Biochemistry and Cell Biology |
244 | ″ | rdf:type | schema:DefinedTerm |
245 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
246 | ″ | schema:name | Genetics |
247 | ″ | rdf:type | schema:DefinedTerm |
248 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
249 | ″ | schema:name | Information and Computing Sciences |
250 | ″ | rdf:type | schema:DefinedTerm |
251 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
252 | ″ | schema:name | Artificial Intelligence and Image Processing |
253 | ″ | rdf:type | schema:DefinedTerm |
254 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
255 | ″ | schema:name | Information Systems |
256 | ″ | rdf:type | schema:DefinedTerm |
257 | sg:grant.2346398 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1471-2105-13-58 |
258 | ″ | rdf:type | schema:MonetaryGrant |
259 | sg:grant.2440532 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1471-2105-13-58 |
260 | ″ | rdf:type | schema:MonetaryGrant |
261 | sg:grant.2480242 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1471-2105-13-58 |
262 | ″ | rdf:type | schema:MonetaryGrant |
263 | sg:grant.2520375 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1471-2105-13-58 |
264 | ″ | rdf:type | schema:MonetaryGrant |
265 | sg:grant.2696331 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1471-2105-13-58 |
266 | ″ | rdf:type | schema:MonetaryGrant |
267 | sg:journal.1023786 | schema:issn | 1471-2105 |
268 | ″ | schema:name | BMC Bioinformatics |
269 | ″ | schema:publisher | Springer Nature |
270 | ″ | rdf:type | schema:Periodical |
271 | sg:person.01043002526.05 | schema:affiliation | grid-institutes:grid.64212.33 |
272 | ″ | schema:familyName | Bressler |
273 | ″ | schema:givenName | Ryan |
274 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043002526.05 |
275 | ″ | rdf:type | schema:Person |
276 | sg:person.01110033460.10 | schema:affiliation | grid-institutes:grid.64212.33 |
277 | ″ | schema:familyName | Boyle |
278 | ″ | schema:givenName | John |
279 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110033460.10 |
280 | ″ | rdf:type | schema:Person |
281 | sg:person.01274460411.86 | schema:affiliation | grid-institutes:grid.64212.33 |
282 | ″ | schema:familyName | Killcoyne |
283 | ″ | schema:givenName | Sarah |
284 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274460411.86 |
285 | ″ | rdf:type | schema:Person |
286 | sg:person.0736074277.36 | schema:affiliation | grid-institutes:grid.64212.33 |
287 | ″ | schema:familyName | Kreisberg |
288 | ″ | schema:givenName | Richard |
289 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736074277.36 |
290 | ″ | rdf:type | schema:Person |
291 | sg:pub.10.1038/nature07385 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039570773 |
292 | ″ | ″ | https://doi.org/10.1038/nature07385 |
293 | ″ | rdf:type | schema:CreativeWork |
294 | sg:pub.10.1038/nbt0410-322 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038433746 |
295 | ″ | ″ | https://doi.org/10.1038/nbt0410-322 |
296 | ″ | rdf:type | schema:CreativeWork |
297 | sg:pub.10.1038/nmeth.1363 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020581697 |
298 | ″ | ″ | https://doi.org/10.1038/nmeth.1363 |
299 | ″ | rdf:type | schema:CreativeWork |
300 | sg:pub.10.1186/1471-2105-10-79 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039759522 |
301 | ″ | ″ | https://doi.org/10.1186/1471-2105-10-79 |
302 | ″ | rdf:type | schema:CreativeWork |
303 | sg:pub.10.1186/1471-2105-12-78 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019495389 |
304 | ″ | ″ | https://doi.org/10.1186/1471-2105-12-78 |
305 | ″ | rdf:type | schema:CreativeWork |
306 | sg:pub.10.1186/1471-2105-9-295 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047116914 |
307 | ″ | ″ | https://doi.org/10.1186/1471-2105-9-295 |
308 | ″ | rdf:type | schema:CreativeWork |
309 | sg:pub.10.1186/1741-7007-5-33 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004081265 |
310 | ″ | ″ | https://doi.org/10.1186/1741-7007-5-33 |
311 | ″ | rdf:type | schema:CreativeWork |
312 | sg:pub.10.1186/1755-8417-2-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039522645 |
313 | ″ | ″ | https://doi.org/10.1186/1755-8417-2-3 |
314 | ″ | rdf:type | schema:CreativeWork |
315 | sg:pub.10.1186/1755-8794-3-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049012532 |
316 | ″ | ″ | https://doi.org/10.1186/1755-8794-3-7 |
317 | ″ | rdf:type | schema:CreativeWork |
318 | grid-institutes:grid.64212.33 | schema:alternateName | Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA |
319 | ″ | schema:name | Institute for Systems Biology, 401 Terry Ave N, 98092, Seattle, WA, USA |
320 | ″ | rdf:type | schema:Organization |