Self-organizing ontology of biochemically relevant small molecules View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Leonid L Chepelev, Janna Hastings, Marcus Ennis, Christoph Steinbeck, Michel Dumontier

ABSTRACT

BACKGROUND: The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. RESULTS: To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. CONCLUSIONS: We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development. More... »

PAGES

3

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-13-3

DOI

http://dx.doi.org/10.1186/1471-2105-13-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000038838

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22221313


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Information Storage and Retrieval", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Subject Headings", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semantics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vocabulary, Controlled", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "Department of Biology, Carleton University, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chepelev", 
        "givenName": "Leonid L", 
        "id": "sg:person.0642060675.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642060675.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Bioinformatics Institute, Wellcome Trust Genome Centre, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hastings", 
        "givenName": "Janna", 
        "id": "sg:person.0606506716.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606506716.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Bioinformatics Institute, Wellcome Trust Genome Centre, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ennis", 
        "givenName": "Marcus", 
        "id": "sg:person.01157704762.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157704762.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Bioinformatics Institute, Wellcome Trust Genome Centre, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinbeck", 
        "givenName": "Christoph", 
        "id": "sg:person.012610137527.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "Department of Biology, Carleton University, Ottawa, Canada", 
            "School of Computer Science, Carleton University, Ottawa, Canada", 
            "Institute of Biochemistry, Carleton University, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumontier", 
        "givenName": "Michel", 
        "id": "sg:person.01324655201.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/prot.20914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004007295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004007295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci050400b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016591305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci050400b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016591305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-839-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028710167", 
          "https://doi.org/10.1007/978-1-60761-839-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-839-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028710167", 
          "https://doi.org/10.1007/978-1-60761-839-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029431299", 
          "https://doi.org/10.1186/1471-2105-12-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029431299", 
          "https://doi.org/10.1186/1471-2105-12-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030379903", 
          "https://doi.org/10.1186/1471-2105-12-256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030920077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci025584y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033183422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci025584y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033183422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2005.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033673037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-3-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036973323", 
          "https://doi.org/10.1186/1758-2946-3-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/205236a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040043378", 
          "https://doi.org/10.1038/205236a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045301876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045387827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-3-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049035748", 
          "https://doi.org/10.1186/1758-2946-3-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10822-009-9260-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049326594", 
          "https://doi.org/10.1007/s10822-009-9260-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci00057a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055400944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci00058a011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055400959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.308.5723.774a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062588162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156802610790232260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069193895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/apscc.2009.5394148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094257508"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest.\nRESULTS: To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development.\nCONCLUSIONS: We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-13-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Self-organizing ontology of biochemically relevant small molecules", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "002f6d90965f6d179329fc2c7d341d15d746531e866c711f4f5c16ca69f7d841"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22221313"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-13-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000038838"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-13-3", 
      "https://app.dimensions.ai/details/publication/pub.1000038838"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-13-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-3'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      55 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-13-3 schema:about N0573f0ccae8848c18834ca0ead71c6a4
2 N61e6bf43b91243fe9eaed345bae56b8f
3 N67483f6651f24dfbb847ff94c76dbb00
4 N9da5efd73dba45c6b9cf405db77fb77c
5 Na4a9405f0f0b4edbba4237e59382e856
6 Ne27cb439f02b486aa6fd1cf068605706
7 Ne6e9402fe8e0453bbfd312e10552592d
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N6deebd470756403291a57abb90668a23
11 schema:citation sg:pub.10.1007/978-1-60761-839-3_11
12 sg:pub.10.1007/s10822-009-9260-9
13 sg:pub.10.1038/205236a0
14 sg:pub.10.1186/1471-2105-12-256
15 sg:pub.10.1186/1471-2105-12-303
16 sg:pub.10.1186/1758-2946-3-16
17 sg:pub.10.1186/1758-2946-3-20
18 https://doi.org/10.1002/prot.20914
19 https://doi.org/10.1016/j.febslet.2005.07.039
20 https://doi.org/10.1016/j.jbi.2008.03.004
21 https://doi.org/10.1021/ci00057a005
22 https://doi.org/10.1021/ci00058a011
23 https://doi.org/10.1021/ci025584y
24 https://doi.org/10.1021/ci050400b
25 https://doi.org/10.1093/nar/gkj122
26 https://doi.org/10.1093/nar/gkm791
27 https://doi.org/10.1109/apscc.2009.5394148
28 https://doi.org/10.1126/science.308.5723.774a
29 https://doi.org/10.2174/156802610790232260
30 schema:datePublished 2012-12
31 schema:datePublishedReg 2012-12-01
32 schema:description BACKGROUND: The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. RESULTS: To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. CONCLUSIONS: We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf Naec130079bc24ddc9fff22e9877424d7
37 Nc6206520c81648f08da3f0bb0dbfaabe
38 sg:journal.1023786
39 schema:name Self-organizing ontology of biochemically relevant small molecules
40 schema:pagination 3
41 schema:productId N1e493833eead448fa75422f8875e080d
42 N3fe5c7d122964d499714b935fd54c36f
43 N5861b5da572a4399b52d2b2a2dbcd0fc
44 Nad6b8620e8ef4d438b0f10fa6be765ef
45 Nf419de7028f343eda240b0e390f3e5a6
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000038838
47 https://doi.org/10.1186/1471-2105-13-3
48 schema:sdDatePublished 2019-04-10T19:55
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N2cf2bf7e4085406dac7853f2599f166b
51 schema:url http://link.springer.com/10.1186/1471-2105-13-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0573f0ccae8848c18834ca0ead71c6a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Databases, Factual
57 rdf:type schema:DefinedTerm
58 N1e493833eead448fa75422f8875e080d schema:name pubmed_id
59 schema:value 22221313
60 rdf:type schema:PropertyValue
61 N2cf2bf7e4085406dac7853f2599f166b schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N3fe5c7d122964d499714b935fd54c36f schema:name readcube_id
64 schema:value 002f6d90965f6d179329fc2c7d341d15d746531e866c711f4f5c16ca69f7d841
65 rdf:type schema:PropertyValue
66 N5861b5da572a4399b52d2b2a2dbcd0fc schema:name doi
67 schema:value 10.1186/1471-2105-13-3
68 rdf:type schema:PropertyValue
69 N5c057e3a8be84866a9254579c372ad9a rdf:first sg:person.01157704762.78
70 rdf:rest N744a0977d2794f188d36e71618e0311f
71 N61e6bf43b91243fe9eaed345bae56b8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Information Storage and Retrieval
73 rdf:type schema:DefinedTerm
74 N67483f6651f24dfbb847ff94c76dbb00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Automation
76 rdf:type schema:DefinedTerm
77 N6c12725363bb4fbf936300857b40b0d8 rdf:first sg:person.01324655201.14
78 rdf:rest rdf:nil
79 N6deebd470756403291a57abb90668a23 rdf:first sg:person.0642060675.11
80 rdf:rest N82c70ded25534d1f94484924d72c56b3
81 N744a0977d2794f188d36e71618e0311f rdf:first sg:person.012610137527.56
82 rdf:rest N6c12725363bb4fbf936300857b40b0d8
83 N82c70ded25534d1f94484924d72c56b3 rdf:first sg:person.0606506716.14
84 rdf:rest N5c057e3a8be84866a9254579c372ad9a
85 N9da5efd73dba45c6b9cf405db77fb77c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Internet
87 rdf:type schema:DefinedTerm
88 Na4a9405f0f0b4edbba4237e59382e856 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Vocabulary, Controlled
90 rdf:type schema:DefinedTerm
91 Nad6b8620e8ef4d438b0f10fa6be765ef schema:name nlm_unique_id
92 schema:value 100965194
93 rdf:type schema:PropertyValue
94 Naec130079bc24ddc9fff22e9877424d7 schema:volumeNumber 13
95 rdf:type schema:PublicationVolume
96 Nc6206520c81648f08da3f0bb0dbfaabe schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Ne27cb439f02b486aa6fd1cf068605706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Semantics
100 rdf:type schema:DefinedTerm
101 Ne6e9402fe8e0453bbfd312e10552592d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Medical Subject Headings
103 rdf:type schema:DefinedTerm
104 Nf419de7028f343eda240b0e390f3e5a6 schema:name dimensions_id
105 schema:value pub.1000038838
106 rdf:type schema:PropertyValue
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:journal.1023786 schema:issn 1471-2105
114 schema:name BMC Bioinformatics
115 rdf:type schema:Periodical
116 sg:person.01157704762.78 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
117 schema:familyName Ennis
118 schema:givenName Marcus
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157704762.78
120 rdf:type schema:Person
121 sg:person.012610137527.56 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
122 schema:familyName Steinbeck
123 schema:givenName Christoph
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56
125 rdf:type schema:Person
126 sg:person.01324655201.14 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
127 schema:familyName Dumontier
128 schema:givenName Michel
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14
130 rdf:type schema:Person
131 sg:person.0606506716.14 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
132 schema:familyName Hastings
133 schema:givenName Janna
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606506716.14
135 rdf:type schema:Person
136 sg:person.0642060675.11 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
137 schema:familyName Chepelev
138 schema:givenName Leonid L
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642060675.11
140 rdf:type schema:Person
141 sg:pub.10.1007/978-1-60761-839-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028710167
142 https://doi.org/10.1007/978-1-60761-839-3_11
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10822-009-9260-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049326594
145 https://doi.org/10.1007/s10822-009-9260-9
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/205236a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040043378
148 https://doi.org/10.1038/205236a0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/1471-2105-12-256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030379903
151 https://doi.org/10.1186/1471-2105-12-256
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/1471-2105-12-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029431299
154 https://doi.org/10.1186/1471-2105-12-303
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/1758-2946-3-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036973323
157 https://doi.org/10.1186/1758-2946-3-16
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1758-2946-3-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049035748
160 https://doi.org/10.1186/1758-2946-3-20
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/prot.20914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004007295
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.febslet.2005.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033673037
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jbi.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030920077
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/ci00057a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400944
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/ci00058a011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400959
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ci025584y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033183422
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/ci050400b schema:sameAs https://app.dimensions.ai/details/publication/pub.1016591305
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/nar/gkj122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045301876
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/nar/gkm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045387827
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/apscc.2009.5394148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094257508
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.308.5723.774a schema:sameAs https://app.dimensions.ai/details/publication/pub.1062588162
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2174/156802610790232260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069193895
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.225360.0 schema:alternateName European Bioinformatics Institute
187 schema:name European Bioinformatics Institute, Wellcome Trust Genome Centre, Hinxton, UK
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.34428.39 schema:alternateName Carleton University
190 schema:name Department of Biology, Carleton University, Ottawa, Canada
191 Institute of Biochemistry, Carleton University, Ottawa, Canada
192 School of Computer Science, Carleton University, Ottawa, Canada
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...