SNP calling by sequencing pooled samples View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Emanuele Raineri, Luca Ferretti, Anna Esteve-Codina, Bruno Nevado, Simon Heath, Miguel Pérez-Enciso

ABSTRACT

BACKGROUND: Performing high throughput sequencing on samples pooled from different individuals is a strategy to characterize genetic variability at a small fraction of the cost required for individual sequencing. In certain circumstances some variability estimators have even lower variance than those obtained with individual sequencing. SNP calling and estimating the frequency of the minor allele from pooled samples, though, is a subtle exercise for at least three reasons. First, sequencing errors may have a much larger relevance than in individual SNP calling: while their impact in individual sequencing can be reduced by setting a restriction on a minimum number of reads per allele, this would have a strong and undesired effect in pools because it is unlikely that alleles at low frequency in the pool will be read many times. Second, the prior allele frequency for heterozygous sites in individuals is usually 0.5 (assuming one is not analyzing sequences coming from, e.g. cancer tissues), but this is not true in pools: in fact, under the standard neutral model, singletons (i.e. alleles of minimum frequency) are the most common class of variants because P(f) ∝ 1/f and they occur more often as the sample size increases. Third, an allele appearing only once in the reads from a pool does not necessarily correspond to a singleton in the set of individuals making up the pool, and vice versa, there can be more than one read - or, more likely, none - from a true singleton. RESULTS: To improve upon existing theory and software packages, we have developed a Bayesian approach for minor allele frequency (MAF) computation and SNP calling in pools (and implemented it in a program called snape): the approach takes into account sequencing errors and allows users to choose different priors. We also set up a pipeline which can simulate the coalescence process giving rise to the SNPs, the pooling procedure and the sequencing. We used it to compare the performance of snape to that of other packages. CONCLUSIONS: We present a software which helps in calling SNPs in pooled samples: it has good power while retaining a low false discovery rate (FDR). The method also provides the posterior probability that a SNP is segregating and the full posterior distribution of f for every SNP. In order to test the behaviour of our software, we generated (through simulated coalescence) artificial genomes and computed the effect of a pooled sequencing protocol, followed by SNP calling. In this setting, snape has better power and False Discovery Rate (FDR) than the comparable packages samtools, PoPoolation, Varscan : for N = 50 chromosomes, snape has power ≈ 35%and FDR ≈ 2.5%. snape is available at http://code.google.com/p/snape-pooled/ (source code and precompiled binaries). More... »

PAGES

239

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-13-239

DOI

http://dx.doi.org/10.1186/1471-2105-13-239

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036852204

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22992255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "Centro Nacional de An\u00e1lisis Gen\u00f3mico (CNAG), Parc Cient\u00edfic de Barcelona, 08028, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raineri", 
        "givenName": "Emanuele", 
        "id": "sg:person.01034067302.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034067302.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre for Research in Agricultural Genomics (CRAG), Universitat Aut\u00f2nonoma de Barcelona, 08193, Bellaterra, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferretti", 
        "givenName": "Luca", 
        "id": "sg:person.0604607310.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604607310.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre for Research in Agricultural Genomics (CRAG), Universitat Aut\u00f2nonoma de Barcelona, 08193, Bellaterra, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esteve-Codina", 
        "givenName": "Anna", 
        "id": "sg:person.01331776746.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331776746.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre for Research in Agricultural Genomics (CRAG), Universitat Aut\u00f2nonoma de Barcelona, 08193, Bellaterra, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevado", 
        "givenName": "Bruno", 
        "id": "sg:person.0576211540.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576211540.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "Centro Nacional de An\u00e1lisis Gen\u00f3mico (CNAG), Parc Cient\u00edfic de Barcelona, 08028, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heath", 
        "givenName": "Simon", 
        "id": "sg:person.01276712002.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276712002.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Centre for Research in Agricultural Genomics (CRAG), Universitat Aut\u00f2nonoma de Barcelona, 08193, Bellaterra, Spain", 
            "Institut Catal\u00e0 de Recerca i Estudis Avan\u00e7ats (ICREA), Passeig Llu\u00eds Companys 23, 08010, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez-Enciso", 
        "givenName": "Miguel", 
        "id": "sg:person.01041433710.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008059544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008270984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.24.7.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008937833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0014782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011124548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.139949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011603631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.139949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011603631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0370164600044886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019189995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02057.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026192892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02057.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026192892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0015925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032227304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.114397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045585344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.114397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045585344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3211856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081021735", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Performing high throughput sequencing on samples pooled from different individuals is a strategy to characterize genetic variability at a small fraction of the cost required for individual sequencing. In certain circumstances some variability estimators have even lower variance than those obtained with individual sequencing. SNP calling and estimating the frequency of the minor allele from pooled samples, though, is a subtle exercise for at least three reasons. First, sequencing errors may have a much larger relevance than in individual SNP calling: while their impact in individual sequencing can be reduced by setting a restriction on a minimum number of reads per allele, this would have a strong and undesired effect in pools because it is unlikely that alleles at low frequency in the pool will be read many times. Second, the prior allele frequency for heterozygous sites in individuals is usually 0.5 (assuming one is not analyzing sequences coming from, e.g. cancer tissues), but this is not true in pools: in fact, under the standard neutral model, singletons (i.e. alleles of minimum frequency) are the most common class of variants because P(f) \u221d 1/f and they occur more often as the sample size increases. Third, an allele appearing only once in the reads from a pool does not necessarily correspond to a singleton in the set of individuals making up the pool, and vice versa, there can be more than one read - or, more likely, none - from a true singleton.\nRESULTS: To improve upon existing theory and software packages, we have developed a Bayesian approach for minor allele frequency (MAF) computation and SNP calling in pools (and implemented it in a program called snape): the approach takes into account sequencing errors and allows users to choose different priors. We also set up a pipeline which can simulate the coalescence process giving rise to the SNPs, the pooling procedure and the sequencing. We used it to compare the performance of snape to that of other packages.\nCONCLUSIONS: We present a software which helps in calling SNPs in pooled samples: it has good power while retaining a low false discovery rate (FDR). The method also provides the posterior probability that a SNP is segregating and the full posterior distribution of f for every SNP. In order to test the behaviour of our software, we generated (through simulated coalescence) artificial genomes and computed the effect of a pooled sequencing protocol, followed by SNP calling. In this setting, snape has better power and False Discovery Rate (FDR) than the comparable packages samtools, PoPoolation, Varscan : for N = 50 chromosomes, snape has power \u2248 35%and FDR \u2248 2.5%. snape is available at http://code.google.com/p/snape-pooled/ (source code and precompiled binaries).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-13-239", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "SNP calling by sequencing pooled samples", 
    "pagination": "239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "af8cd71d21b1a035a413654f032b4d05adcc641d60fabacc3b11cd2270327cfc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22992255"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-13-239"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036852204"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-13-239", 
      "https://app.dimensions.ai/details/publication/pub.1036852204"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-13-239"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-239'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-239'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-239'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-239'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      52 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-13-239 schema:about N19af950d9b5e4e95988de53a481ed728
2 N227f7a4dd03646eeaa5383f12c8d7857
3 N245c4747a51e46f9b4ebe1d3269a1496
4 N41603e6ef293450a9244a182d93a3602
5 N48015cc8180a40af8cf7af4b9126d9bb
6 N5f3f57e7cf19418580755597b8d29677
7 N8e27e25568174328a211a75213938566
8 Nc0bdb3999eb94081a05fdf5674b9a35f
9 Ndfcac2aba9ef41ec894b8873fb58bc85
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N5be96f8423d0409da4ff1085f2485c31
13 schema:citation https://app.dimensions.ai/details/publication/pub.1081021735
14 https://doi.org/10.1017/s0370164600044886
15 https://doi.org/10.1073/pnas.24.7.253
16 https://doi.org/10.1093/bioinformatics/18.2.337
17 https://doi.org/10.1093/bioinformatics/btp352
18 https://doi.org/10.1093/bioinformatics/btp373
19 https://doi.org/10.1093/bioinformatics/btp698
20 https://doi.org/10.1093/bioinformatics/btr708
21 https://doi.org/10.1111/j.1365-2052.2010.02057.x
22 https://doi.org/10.1371/journal.pone.0014782
23 https://doi.org/10.1371/journal.pone.0015925
24 https://doi.org/10.1534/genetics.110.114397
25 https://doi.org/10.1534/genetics.112.139949
26 https://doi.org/10.2307/3211856
27 schema:datePublished 2012-12
28 schema:datePublishedReg 2012-12-01
29 schema:description BACKGROUND: Performing high throughput sequencing on samples pooled from different individuals is a strategy to characterize genetic variability at a small fraction of the cost required for individual sequencing. In certain circumstances some variability estimators have even lower variance than those obtained with individual sequencing. SNP calling and estimating the frequency of the minor allele from pooled samples, though, is a subtle exercise for at least three reasons. First, sequencing errors may have a much larger relevance than in individual SNP calling: while their impact in individual sequencing can be reduced by setting a restriction on a minimum number of reads per allele, this would have a strong and undesired effect in pools because it is unlikely that alleles at low frequency in the pool will be read many times. Second, the prior allele frequency for heterozygous sites in individuals is usually 0.5 (assuming one is not analyzing sequences coming from, e.g. cancer tissues), but this is not true in pools: in fact, under the standard neutral model, singletons (i.e. alleles of minimum frequency) are the most common class of variants because P(f) ∝ 1/f and they occur more often as the sample size increases. Third, an allele appearing only once in the reads from a pool does not necessarily correspond to a singleton in the set of individuals making up the pool, and vice versa, there can be more than one read - or, more likely, none - from a true singleton. RESULTS: To improve upon existing theory and software packages, we have developed a Bayesian approach for minor allele frequency (MAF) computation and SNP calling in pools (and implemented it in a program called snape): the approach takes into account sequencing errors and allows users to choose different priors. We also set up a pipeline which can simulate the coalescence process giving rise to the SNPs, the pooling procedure and the sequencing. We used it to compare the performance of snape to that of other packages. CONCLUSIONS: We present a software which helps in calling SNPs in pooled samples: it has good power while retaining a low false discovery rate (FDR). The method also provides the posterior probability that a SNP is segregating and the full posterior distribution of f for every SNP. In order to test the behaviour of our software, we generated (through simulated coalescence) artificial genomes and computed the effect of a pooled sequencing protocol, followed by SNP calling. In this setting, snape has better power and False Discovery Rate (FDR) than the comparable packages samtools, PoPoolation, Varscan : for N = 50 chromosomes, snape has power ≈ 35%and FDR ≈ 2.5%. snape is available at http://code.google.com/p/snape-pooled/ (source code and precompiled binaries).
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N34d7a68c23634a3693ecb7d3299963c3
34 N4cca61f6418841ebb3b4df2a49904789
35 sg:journal.1023786
36 schema:name SNP calling by sequencing pooled samples
37 schema:pagination 239
38 schema:productId N23957b2454ed4332b15a792f73910dcc
39 N2dfc9bbf2def4582a31834852241f2a9
40 N52eada4c1cfe4fcb89445814c479dbda
41 Naebda74334eb4320971ad0463b7ca003
42 Nca99168b2295465689ba8211b438caa9
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036852204
44 https://doi.org/10.1186/1471-2105-13-239
45 schema:sdDatePublished 2019-04-11T10:32
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nbc2753f1707f44b184be33e3cd11f8a9
48 schema:url https://link.springer.com/10.1186%2F1471-2105-13-239
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N04c277e0451c4809837e2604089b373e schema:name Centre for Research in Agricultural Genomics (CRAG), Universitat Autònonoma de Barcelona, 08193, Bellaterra, Spain
53 rdf:type schema:Organization
54 N19af950d9b5e4e95988de53a481ed728 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Bayes Theorem
56 rdf:type schema:DefinedTerm
57 N1a9c11f05e9046428b225dfbf1d1d9a9 rdf:first sg:person.0604607310.31
58 rdf:rest Nd4f34579ff724eee80b64cd26ee12f22
59 N227f7a4dd03646eeaa5383f12c8d7857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Alleles
61 rdf:type schema:DefinedTerm
62 N23957b2454ed4332b15a792f73910dcc schema:name nlm_unique_id
63 schema:value 100965194
64 rdf:type schema:PropertyValue
65 N245c4747a51e46f9b4ebe1d3269a1496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name High-Throughput Nucleotide Sequencing
67 rdf:type schema:DefinedTerm
68 N2dfc9bbf2def4582a31834852241f2a9 schema:name dimensions_id
69 schema:value pub.1036852204
70 rdf:type schema:PropertyValue
71 N34d7a68c23634a3693ecb7d3299963c3 schema:volumeNumber 13
72 rdf:type schema:PublicationVolume
73 N41603e6ef293450a9244a182d93a3602 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N45eca3d4f0d04d44bf82fd73d21b1041 rdf:first sg:person.01276712002.66
77 rdf:rest Nc9729e57e3cb4f2c862625ec27368d7e
78 N48015cc8180a40af8cf7af4b9126d9bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Software
80 rdf:type schema:DefinedTerm
81 N4954e117604241e0bd2b7094ad33b91f schema:name Centre for Research in Agricultural Genomics (CRAG), Universitat Autònonoma de Barcelona, 08193, Bellaterra, Spain
82 rdf:type schema:Organization
83 N4cca61f6418841ebb3b4df2a49904789 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N52eada4c1cfe4fcb89445814c479dbda schema:name doi
86 schema:value 10.1186/1471-2105-13-239
87 rdf:type schema:PropertyValue
88 N54598be5cd054f168d280c8f9ded902d schema:name Centre for Research in Agricultural Genomics (CRAG), Universitat Autònonoma de Barcelona, 08193, Bellaterra, Spain
89 rdf:type schema:Organization
90 N5be96f8423d0409da4ff1085f2485c31 rdf:first sg:person.01034067302.26
91 rdf:rest N1a9c11f05e9046428b225dfbf1d1d9a9
92 N5f3f57e7cf19418580755597b8d29677 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Genome
94 rdf:type schema:DefinedTerm
95 N8e27e25568174328a211a75213938566 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Polymorphism, Single Nucleotide
97 rdf:type schema:DefinedTerm
98 N96d63a043dea4907bfef710e582c9473 rdf:first sg:person.0576211540.39
99 rdf:rest N45eca3d4f0d04d44bf82fd73d21b1041
100 Naebda74334eb4320971ad0463b7ca003 schema:name readcube_id
101 schema:value af8cd71d21b1a035a413654f032b4d05adcc641d60fabacc3b11cd2270327cfc
102 rdf:type schema:PropertyValue
103 Nbc2753f1707f44b184be33e3cd11f8a9 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nc0bdb3999eb94081a05fdf5674b9a35f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Sequence Analysis, DNA
107 rdf:type schema:DefinedTerm
108 Nc9729e57e3cb4f2c862625ec27368d7e rdf:first sg:person.01041433710.67
109 rdf:rest rdf:nil
110 Nca99168b2295465689ba8211b438caa9 schema:name pubmed_id
111 schema:value 22992255
112 rdf:type schema:PropertyValue
113 Nd4f34579ff724eee80b64cd26ee12f22 rdf:first sg:person.01331776746.94
114 rdf:rest N96d63a043dea4907bfef710e582c9473
115 Ndfcac2aba9ef41ec894b8873fb58bc85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Gene Frequency
117 rdf:type schema:DefinedTerm
118 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
119 schema:name Biological Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
122 schema:name Genetics
123 rdf:type schema:DefinedTerm
124 sg:journal.1023786 schema:issn 1471-2105
125 schema:name BMC Bioinformatics
126 rdf:type schema:Periodical
127 sg:person.01034067302.26 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
128 schema:familyName Raineri
129 schema:givenName Emanuele
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034067302.26
131 rdf:type schema:Person
132 sg:person.01041433710.67 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
133 schema:familyName Pérez-Enciso
134 schema:givenName Miguel
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67
136 rdf:type schema:Person
137 sg:person.01276712002.66 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
138 schema:familyName Heath
139 schema:givenName Simon
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276712002.66
141 rdf:type schema:Person
142 sg:person.01331776746.94 schema:affiliation N54598be5cd054f168d280c8f9ded902d
143 schema:familyName Esteve-Codina
144 schema:givenName Anna
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331776746.94
146 rdf:type schema:Person
147 sg:person.0576211540.39 schema:affiliation N4954e117604241e0bd2b7094ad33b91f
148 schema:familyName Nevado
149 schema:givenName Bruno
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576211540.39
151 rdf:type schema:Person
152 sg:person.0604607310.31 schema:affiliation N04c277e0451c4809837e2604089b373e
153 schema:familyName Ferretti
154 schema:givenName Luca
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604607310.31
156 rdf:type schema:Person
157 https://app.dimensions.ai/details/publication/pub.1081021735 schema:CreativeWork
158 https://doi.org/10.1017/s0370164600044886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019189995
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1073/pnas.24.7.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008937833
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/bioinformatics/18.2.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789793
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/btp373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008270984
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/btr708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008059544
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/j.1365-2052.2010.02057.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026192892
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1371/journal.pone.0014782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011124548
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1371/journal.pone.0015925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032227304
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1534/genetics.110.114397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045585344
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1534/genetics.112.139949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011603631
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2307/3211856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226100
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
185 schema:name Centre for Research in Agricultural Genomics (CRAG), Universitat Autònonoma de Barcelona, 08193, Bellaterra, Spain
186 Institut Català de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
189 schema:name Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, 08028, Barcelona, Spain
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...