AGORA: Assembly Guided by Optical Restriction Alignment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Henry C Lin, Steve Goldstein, Lee Mendelowitz, Shiguo Zhou, Joshua Wetzel, David C Schwartz, Mihai Pop

ABSTRACT

BACKGROUND: Genome assembly is difficult due to repeated sequences within the genome, which create ambiguities and cause the final assembly to be broken up into many separate sequences (contigs). Long range linking information, such as mate-pairs or mapping data, is necessary to help assembly software resolve repeats, thereby leading to a more complete reconstruction of genomes. Prior work has used optical maps for validating assemblies and scaffolding contigs, after an initial assembly has been produced. However, optical maps have not previously been used within the genome assembly process. Here, we use optical map information within the popular de Bruijn graph assembly paradigm to eliminate paths in the de Bruijn graph which are not consistent with the optical map and help determine the correct reconstruction of the genome. RESULTS: We developed a new algorithm called AGORA: Assembly Guided by Optical Restriction Alignment. AGORA is the first algorithm to use optical map information directly within the de Bruijn graph framework to help produce an accurate assembly of a genome that is consistent with the optical map information provided. Our simulations on bacterial genomes show that AGORA is effective at producing assemblies closely matching the reference sequences.Additionally, we show that noise in the optical map can have a strong impact on the final assembly quality for some complex genomes, and we also measure how various characteristics of the starting de Bruijn graph may impact the quality of the final assembly. Lastly, we show that a proper choice of restriction enzyme for the optical map may substantially improve the quality of the final assembly. CONCLUSIONS: Our work shows that optical maps can be used effectively to assemble genomes within the de Bruijn graph assembly framework. Our experiments also provide insights into the characteristics of the mapping data that most affect the performance of our algorithm, indicating the potential benefit of more accurate optical mapping technologies, such as nano-coding. More... »

PAGES

189

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-13-189

DOI

http://dx.doi.org/10.1186/1471-2105-13-189

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021027371

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22856673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yersinia pestis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Bioinformatics and Computational Biology, University of Maryland-College Park, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Henry C", 
        "id": "sg:person.01302642003.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302642003.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, WI, USA", 
            "Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA", 
            "Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldstein", 
        "givenName": "Steve", 
        "id": "sg:person.016052115057.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052115057.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Bioinformatics and Computational Biology, University of Maryland-College Park, College Park, MD, USA", 
            "Applied Mathematics and Scientific Computation Program, University of Maryland-College Park, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mendelowitz", 
        "givenName": "Lee", 
        "id": "sg:person.0741577503.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741577503.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, WI, USA", 
            "Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA", 
            "Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Shiguo", 
        "id": "sg:person.01073440243.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073440243.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Computer Science, and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wetzel", 
        "givenName": "Joshua", 
        "id": "sg:person.01172254503.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172254503.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, WI, USA", 
            "Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA", 
            "Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwartz", 
        "givenName": "David C", 
        "id": "sg:person.013453527622.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013453527622.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Bioinformatics and Computational Biology, University of Maryland-College Park, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pop", 
        "givenName": "Mihai", 
        "id": "sg:person.01347372513.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347372513.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-7799(99)01326-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002186260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0914638107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002734064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.12.6321-6331.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002815355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-8-278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003983720", 
          "https://doi.org/10.1186/1471-2164-8-278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1017351108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004253849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0604040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004868369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/10.15.4731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007734579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74126-8_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008956353", 
          "https://doi.org/10.1007/978-3-540-74126-8_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.171285098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010138766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0611151104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011047825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.089532.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011404279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012266713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-10-r103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012804464", 
          "https://doi.org/10.1186/gb-2009-10-10-r103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.22.7773-7782.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014186937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016441007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020547896", 
          "https://doi.org/10.1186/1471-2105-12-95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020547896", 
          "https://doi.org/10.1186/1471-2105-12-95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5433.1558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021867073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080763", 
          "https://doi.org/10.1007/bf01580113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080763", 
          "https://doi.org/10.1007/bf01580113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90546-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022179806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022472488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-2-r12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022585853", 
          "https://doi.org/10.1186/gb-2004-5-2-r12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-57155-8_267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025726596", 
          "https://doi.org/10.1007/3-540-57155-8_267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2002.03126.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029848127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034378118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(93)e0177-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034927778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7337908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035219026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2009.0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035426462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039507468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040509079", 
          "https://doi.org/10.1186/1471-2105-11-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.9.5511-5522.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042509793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.131383.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044181786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047864988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02523689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048536748", 
          "https://doi.org/10.1007/bf02523689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02523689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048536748", 
          "https://doi.org/10.1007/bf02523689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050161513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molbiopara.2004.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.074492.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0496401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0496401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1997.4.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2006.13.442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/8.5.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7542800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062647490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8211116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074631083", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Genome assembly is difficult due to repeated sequences within the genome, which create ambiguities and cause the final assembly to be broken up into many separate sequences (contigs). Long range linking information, such as mate-pairs or mapping data, is necessary to help assembly software resolve repeats, thereby leading to a more complete reconstruction of genomes. Prior work has used optical maps for validating assemblies and scaffolding contigs, after an initial assembly has been produced. However, optical maps have not previously been used within the genome assembly process. Here, we use optical map information within the popular de Bruijn graph assembly paradigm to eliminate paths in the de Bruijn graph which are not consistent with the optical map and help determine the correct reconstruction of the genome.\nRESULTS: We developed a new algorithm called AGORA: Assembly Guided by Optical Restriction Alignment. AGORA is the first algorithm to use optical map information directly within the de Bruijn graph framework to help produce an accurate assembly of a genome that is consistent with the optical map information provided. Our simulations on bacterial genomes show that AGORA is effective at producing assemblies closely matching the reference sequences.Additionally, we show that noise in the optical map can have a strong impact on the final assembly quality for some complex genomes, and we also measure how various characteristics of the starting de Bruijn graph may impact the quality of the final assembly. Lastly, we show that a proper choice of restriction enzyme for the optical map may substantially improve the quality of the final assembly.\nCONCLUSIONS: Our work shows that optical maps can be used effectively to assemble genomes within the de Bruijn graph assembly framework. Our experiments also provide insights into the characteristics of the mapping data that most affect the performance of our algorithm, indicating the potential benefit of more accurate optical mapping technologies, such as nano-coding.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-13-189", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3000840", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3132702", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2528752", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "AGORA: Assembly Guided by Optical Restriction Alignment", 
    "pagination": "189", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "642fadd6106441a1fe49ec6700b5a66ebc086819f80542d375fa546d5f7f0bbf"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22856673"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-13-189"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021027371"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-13-189", 
      "https://app.dimensions.ai/details/publication/pub.1021027371"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-13-189"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-189'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-189'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-189'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-189'


 

This table displays all metadata directly associated to this object as RDF triples.

290 TRIPLES      21 PREDICATES      79 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-13-189 schema:about N04a9ad7997ea4aabbc359a1f18aee0b9
2 N06dbe663c08840d3b54e6b0da9e9154c
3 N0e5543df4f784d5c8804eba2253e4028
4 N433c942fff3349c2b8d21f0aae4a9e95
5 Na479b6d5b037473a9d61dc9228197edd
6 Ne8d360b9118645ba98a2c9a6cbeb7b34
7 Nf99dc6181efe4463a172501b60ee98df
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N7cf3fca6c4f9421284b1a9635475d80d
11 schema:citation sg:pub.10.1007/3-540-57155-8_267
12 sg:pub.10.1007/978-3-540-74126-8_27
13 sg:pub.10.1007/bf01580113
14 sg:pub.10.1007/bf02523689
15 sg:pub.10.1186/1471-2105-11-21
16 sg:pub.10.1186/1471-2105-12-95
17 sg:pub.10.1186/1471-2164-8-278
18 sg:pub.10.1186/gb-2004-5-2-r12
19 sg:pub.10.1186/gb-2009-10-10-r103
20 https://app.dimensions.ai/details/publication/pub.1074631083
21 https://doi.org/10.1016/0022-2836(82)90546-0
22 https://doi.org/10.1016/0166-218x(93)e0177-z
23 https://doi.org/10.1016/j.molbiopara.2004.08.002
24 https://doi.org/10.1016/s0167-7799(99)01326-8
25 https://doi.org/10.1021/ac0496401
26 https://doi.org/10.1046/j.1365-2958.2002.03126.x
27 https://doi.org/10.1073/pnas.0604040103
28 https://doi.org/10.1073/pnas.0611151104
29 https://doi.org/10.1073/pnas.0914638107
30 https://doi.org/10.1073/pnas.1017351108
31 https://doi.org/10.1073/pnas.171285098
32 https://doi.org/10.1089/cmb.1997.4.91
33 https://doi.org/10.1089/cmb.2006.13.442
34 https://doi.org/10.1089/cmb.2009.0005
35 https://doi.org/10.1093/bioinformatics/8.5.511
36 https://doi.org/10.1093/bioinformatics/btl063
37 https://doi.org/10.1093/bioinformatics/btn025
38 https://doi.org/10.1093/bioinformatics/btn102
39 https://doi.org/10.1093/bioinformatics/btp336
40 https://doi.org/10.1093/bioinformatics/btq646
41 https://doi.org/10.1093/nar/10.15.4731
42 https://doi.org/10.1101/gr.074492.107
43 https://doi.org/10.1101/gr.089532.108
44 https://doi.org/10.1101/gr.131383.111
45 https://doi.org/10.1101/gr.5.1.1
46 https://doi.org/10.1101/gr.7337908
47 https://doi.org/10.1126/science.285.5433.1558
48 https://doi.org/10.1126/science.7542800
49 https://doi.org/10.1126/science.8211116
50 https://doi.org/10.1128/aem.68.12.6321-6331.2002
51 https://doi.org/10.1128/aem.71.9.5511-5522.2005
52 https://doi.org/10.1128/jb.186.22.7773-7782.2004
53 https://doi.org/10.1371/journal.pgen.1000711
54 schema:datePublished 2012-12
55 schema:datePublishedReg 2012-12-01
56 schema:description BACKGROUND: Genome assembly is difficult due to repeated sequences within the genome, which create ambiguities and cause the final assembly to be broken up into many separate sequences (contigs). Long range linking information, such as mate-pairs or mapping data, is necessary to help assembly software resolve repeats, thereby leading to a more complete reconstruction of genomes. Prior work has used optical maps for validating assemblies and scaffolding contigs, after an initial assembly has been produced. However, optical maps have not previously been used within the genome assembly process. Here, we use optical map information within the popular de Bruijn graph assembly paradigm to eliminate paths in the de Bruijn graph which are not consistent with the optical map and help determine the correct reconstruction of the genome. RESULTS: We developed a new algorithm called AGORA: Assembly Guided by Optical Restriction Alignment. AGORA is the first algorithm to use optical map information directly within the de Bruijn graph framework to help produce an accurate assembly of a genome that is consistent with the optical map information provided. Our simulations on bacterial genomes show that AGORA is effective at producing assemblies closely matching the reference sequences.Additionally, we show that noise in the optical map can have a strong impact on the final assembly quality for some complex genomes, and we also measure how various characteristics of the starting de Bruijn graph may impact the quality of the final assembly. Lastly, we show that a proper choice of restriction enzyme for the optical map may substantially improve the quality of the final assembly. CONCLUSIONS: Our work shows that optical maps can be used effectively to assemble genomes within the de Bruijn graph assembly framework. Our experiments also provide insights into the characteristics of the mapping data that most affect the performance of our algorithm, indicating the potential benefit of more accurate optical mapping technologies, such as nano-coding.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf Nae599a9b7f584999b819c830cbaa9bf1
61 Nc8537512554b49939e050647ba1a55fe
62 sg:journal.1023786
63 schema:name AGORA: Assembly Guided by Optical Restriction Alignment
64 schema:pagination 189
65 schema:productId N157f6906ac1841ff828de562cde3e446
66 N3c17acc2bec84d3b86cda5f94e492b57
67 N6e6002b905654739ba87cb7494e02957
68 N92c30f6d6a8a4c20bd1abbc704bf523f
69 Ndb2805911fdb45828994c3c30098a588
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021027371
71 https://doi.org/10.1186/1471-2105-13-189
72 schema:sdDatePublished 2019-04-11T10:00
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N14678672ec204171a00d342aa1311c2f
75 schema:url https://link.springer.com/10.1186%2F1471-2105-13-189
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N04a9ad7997ea4aabbc359a1f18aee0b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Computer Simulation
81 rdf:type schema:DefinedTerm
82 N06dbe663c08840d3b54e6b0da9e9154c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Chromosome Mapping
84 rdf:type schema:DefinedTerm
85 N0e5543df4f784d5c8804eba2253e4028 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Computational Biology
87 rdf:type schema:DefinedTerm
88 N14678672ec204171a00d342aa1311c2f schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N157f6906ac1841ff828de562cde3e446 schema:name readcube_id
91 schema:value 642fadd6106441a1fe49ec6700b5a66ebc086819f80542d375fa546d5f7f0bbf
92 rdf:type schema:PropertyValue
93 N3c17acc2bec84d3b86cda5f94e492b57 schema:name pubmed_id
94 schema:value 22856673
95 rdf:type schema:PropertyValue
96 N433c942fff3349c2b8d21f0aae4a9e95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 N6e6002b905654739ba87cb7494e02957 schema:name doi
100 schema:value 10.1186/1471-2105-13-189
101 rdf:type schema:PropertyValue
102 N7a2247303fc54c88b2bb579f39685acd rdf:first sg:person.01347372513.23
103 rdf:rest rdf:nil
104 N7cf3fca6c4f9421284b1a9635475d80d rdf:first sg:person.01302642003.50
105 rdf:rest N8156056d3d7b47579c85c638bac8b281
106 N8095208ea8f1417bbefdf6823f12c9a0 rdf:first sg:person.01172254503.66
107 rdf:rest N86c4b878cc1c420fb43d958f666734e1
108 N8156056d3d7b47579c85c638bac8b281 rdf:first sg:person.016052115057.39
109 rdf:rest Nc2b482a490d245258dd89b0b15c016a7
110 N86c4b878cc1c420fb43d958f666734e1 rdf:first sg:person.013453527622.12
111 rdf:rest N7a2247303fc54c88b2bb579f39685acd
112 N92c30f6d6a8a4c20bd1abbc704bf523f schema:name dimensions_id
113 schema:value pub.1021027371
114 rdf:type schema:PropertyValue
115 Na479b6d5b037473a9d61dc9228197edd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genomics
117 rdf:type schema:DefinedTerm
118 Nae599a9b7f584999b819c830cbaa9bf1 schema:volumeNumber 13
119 rdf:type schema:PublicationVolume
120 Nc2b482a490d245258dd89b0b15c016a7 rdf:first sg:person.0741577503.33
121 rdf:rest Nc7dfb93e163c49048647b0857ff27a57
122 Nc7dfb93e163c49048647b0857ff27a57 rdf:first sg:person.01073440243.39
123 rdf:rest N8095208ea8f1417bbefdf6823f12c9a0
124 Nc8537512554b49939e050647ba1a55fe schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 Ndb2805911fdb45828994c3c30098a588 schema:name nlm_unique_id
127 schema:value 100965194
128 rdf:type schema:PropertyValue
129 Ne8d360b9118645ba98a2c9a6cbeb7b34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Genome, Bacterial
131 rdf:type schema:DefinedTerm
132 Nf99dc6181efe4463a172501b60ee98df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Yersinia pestis
134 rdf:type schema:DefinedTerm
135 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
136 schema:name Information and Computing Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
139 schema:name Artificial Intelligence and Image Processing
140 rdf:type schema:DefinedTerm
141 sg:grant.2528752 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-13-189
142 rdf:type schema:MonetaryGrant
143 sg:grant.3000840 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-13-189
144 rdf:type schema:MonetaryGrant
145 sg:grant.3132702 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-13-189
146 rdf:type schema:MonetaryGrant
147 sg:journal.1023786 schema:issn 1471-2105
148 schema:name BMC Bioinformatics
149 rdf:type schema:Periodical
150 sg:person.01073440243.39 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
151 schema:familyName Zhou
152 schema:givenName Shiguo
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073440243.39
154 rdf:type schema:Person
155 sg:person.01172254503.66 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
156 schema:familyName Wetzel
157 schema:givenName Joshua
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172254503.66
159 rdf:type schema:Person
160 sg:person.01302642003.50 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
161 schema:familyName Lin
162 schema:givenName Henry C
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302642003.50
164 rdf:type schema:Person
165 sg:person.013453527622.12 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
166 schema:familyName Schwartz
167 schema:givenName David C
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013453527622.12
169 rdf:type schema:Person
170 sg:person.01347372513.23 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
171 schema:familyName Pop
172 schema:givenName Mihai
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347372513.23
174 rdf:type schema:Person
175 sg:person.016052115057.39 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
176 schema:familyName Goldstein
177 schema:givenName Steve
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016052115057.39
179 rdf:type schema:Person
180 sg:person.0741577503.33 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
181 schema:familyName Mendelowitz
182 schema:givenName Lee
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741577503.33
184 rdf:type schema:Person
185 sg:pub.10.1007/3-540-57155-8_267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025726596
186 https://doi.org/10.1007/3-540-57155-8_267
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/978-3-540-74126-8_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008956353
189 https://doi.org/10.1007/978-3-540-74126-8_27
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf01580113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080763
192 https://doi.org/10.1007/bf01580113
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/bf02523689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048536748
195 https://doi.org/10.1007/bf02523689
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2105-11-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040509079
198 https://doi.org/10.1186/1471-2105-11-21
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2105-12-95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020547896
201 https://doi.org/10.1186/1471-2105-12-95
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2164-8-278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003983720
204 https://doi.org/10.1186/1471-2164-8-278
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/gb-2004-5-2-r12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585853
207 https://doi.org/10.1186/gb-2004-5-2-r12
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/gb-2009-10-10-r103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012804464
210 https://doi.org/10.1186/gb-2009-10-10-r103
211 rdf:type schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1074631083 schema:CreativeWork
213 https://doi.org/10.1016/0022-2836(82)90546-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022179806
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/0166-218x(93)e0177-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034927778
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.molbiopara.2004.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802935
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0167-7799(99)01326-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002186260
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/ac0496401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054996644
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1046/j.1365-2958.2002.03126.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029848127
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.0604040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004868369
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1073/pnas.0611151104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011047825
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1073/pnas.0914638107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002734064
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1073/pnas.1017351108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004253849
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1073/pnas.171285098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010138766
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1089/cmb.1997.4.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245196
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1089/cmb.2006.13.442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245486
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1089/cmb.2009.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035426462
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/bioinformatics/8.5.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414192
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/bioinformatics/btl063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022472488
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/bioinformatics/btn102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034378118
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/bioinformatics/btq646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047864988
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/nar/10.15.4731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007734579
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1101/gr.074492.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720574
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1101/gr.089532.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011404279
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1101/gr.131383.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044181786
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1101/gr.5.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050161513
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1101/gr.7337908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035219026
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1126/science.285.5433.1558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021867073
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1126/science.7542800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062647490
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1126/science.8211116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653630
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1128/aem.68.12.6321-6331.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002815355
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1128/aem.71.9.5511-5522.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042509793
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1128/jb.186.22.7773-7782.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014186937
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1371/journal.pgen.1000711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039507468
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
280 schema:name Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
281 Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, WI, USA
282 Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
285 schema:name Applied Mathematics and Scientific Computation Program, University of Maryland-College Park, College Park, MD, USA
286 Center for Bioinformatics and Computational Biology, University of Maryland-College Park, College Park, MD, USA
287 rdf:type schema:Organization
288 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
289 schema:name Department of Computer Science, and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
290 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...