Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Jose C A Santos, Houssam Nassif, David Page, Stephen H Muggleton, Michael J E Sternberg

ABSTRACT

BACKGROUND: There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. RESULTS: The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. CONCLUSIONS: In addition to confirming literature results, ProGolem's model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners. More... »

PAGES

162

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-13-162

DOI

http://dx.doi.org/10.1186/1471-2105-13-162

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033096409

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22783946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hexoses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Computational Bioinformatics Laboratory, Department of Computer Science, Imperial College London, SW7 2BZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "A Santos", 
        "givenName": "Jose C", 
        "id": "sg:person.012121030415.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012121030415.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Computer Sciences, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI-53706, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nassif", 
        "givenName": "Houssam", 
        "id": "sg:person.01356571250.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356571250.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Computer Sciences, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI-53706, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Page", 
        "givenName": "David", 
        "id": "sg:person.0633165150.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633165150.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Computational Bioinformatics Laboratory, Department of Computer Science, Imperial College London, SW7 2BZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muggleton", 
        "givenName": "Stephen H", 
        "id": "sg:person.01125137176.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125137176.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Centre for Bioinformatics, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "E Sternberg", 
        "givenName": "Michael J", 
        "id": "sg:person.0611736450.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/prot.22639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000255487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000255487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20040892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20040892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004359016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004359016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504023102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009736851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13840-9_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010144147", 
          "https://doi.org/10.1007/978-3-642-13840-9_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13840-9_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010144147", 
          "https://doi.org/10.1007/978-3-642-13840-9_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200605116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011909268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014586075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014586075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-8130(98)00056-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016403375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13840-9_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017918768", 
          "https://doi.org/10.1007/978-3-642-13840-9_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13840-9_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017918768", 
          "https://doi.org/10.1007/978-3-642-13840-9_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.04812804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032143234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035008782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035055456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.11.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035150848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/gzg065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036991465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-10-23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038353989", 
          "https://doi.org/10.1186/1472-6807-10-23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(71)90012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043429023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(71)90012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043429023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/13.2.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045555471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.15.5648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048402749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007460424845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049786310", 
          "https://doi.org/10.1023/a:1007460424845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3540635149_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050437600", 
          "https://doi.org/10.1007/3540635149_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008280620621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050540325", 
          "https://doi.org/10.1023/a:1008280620621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-7-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051028633", 
          "https://doi.org/10.1186/1472-6807-7-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-2126(97)00260-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052608197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89982-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053384267", 
          "https://doi.org/10.1007/978-3-540-89982-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89982-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053384267", 
          "https://doi.org/10.1007/978-3-540-89982-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi035430r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055197802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi035430r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055197802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.824819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078493577", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2010.5586110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094635720"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions.\nRESULTS: The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature.\nCONCLUSIONS: In addition to confirming literature results, ProGolem's model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-13-162", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2479279", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3627094", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study", 
    "pagination": "162", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9daa922de23aefd4b86c1f741be066e0397df6b9da12e54d24270d0e0ec12d30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22783946"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-13-162"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033096409"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-13-162", 
      "https://app.dimensions.ai/details/publication/pub.1033096409"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-13-162"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-162'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-162'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-162'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-13-162'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      65 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-13-162 schema:about N1b3856de05104006a05ba7469bd10451
2 N2426b526b90e44e8a5058918ec4276bc
3 N30f2dcb3d4b6412bbd2a5c1cd92ee311
4 N63a43e648dce4345880a51ae00ffbe53
5 Naff3c08534d04db19651c6fe9439685b
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author N04da0810275648e0aee8fd86683273a4
9 schema:citation sg:pub.10.1007/3540635149_56
10 sg:pub.10.1007/978-3-540-89982-2_1
11 sg:pub.10.1007/978-3-642-13840-9_13
12 sg:pub.10.1007/978-3-642-13840-9_14
13 sg:pub.10.1023/a:1007460424845
14 sg:pub.10.1023/a:1008280620621
15 sg:pub.10.1023/a:1010933404324
16 sg:pub.10.1186/1471-2105-7-3
17 sg:pub.10.1186/1472-6807-10-23
18 sg:pub.10.1186/1472-6807-7-1
19 https://app.dimensions.ai/details/publication/pub.1078493577
20 https://doi.org/10.1002/anie.200605116
21 https://doi.org/10.1002/prot.10612
22 https://doi.org/10.1002/prot.22424
23 https://doi.org/10.1002/prot.22639
24 https://doi.org/10.1016/0004-3702(71)90012-9
25 https://doi.org/10.1016/j.jmb.2005.11.044
26 https://doi.org/10.1016/s0141-8130(98)00056-7
27 https://doi.org/10.1016/s0969-2126(97)00260-8
28 https://doi.org/10.1021/bi035430r
29 https://doi.org/10.1042/bj20040892
30 https://doi.org/10.1073/pnas.0504023102
31 https://doi.org/10.1073/pnas.87.15.5648
32 https://doi.org/10.1093/bioinformatics/btg224
33 https://doi.org/10.1093/nar/28.1.235
34 https://doi.org/10.1093/nar/gkq398
35 https://doi.org/10.1093/protein/13.2.89
36 https://doi.org/10.1093/protein/gzg065
37 https://doi.org/10.1109/34.824819
38 https://doi.org/10.1109/cec.2010.5586110
39 https://doi.org/10.1110/ps.04812804
40 schema:datePublished 2012-12
41 schema:datePublishedReg 2012-12-01
42 schema:description BACKGROUND: There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. RESULTS: The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. CONCLUSIONS: In addition to confirming literature results, ProGolem's model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N7f605ded468e42c2afe800161f0ac1f0
47 Na818361a4a2641c68f8b8bd5d4d1a4fe
48 sg:journal.1023786
49 schema:name Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study
50 schema:pagination 162
51 schema:productId N41a3da18305544879d947c21b2fee3a7
52 N7edf335d66604d329d3031320d0bdd00
53 N97599f2f3db7404189c1ff500585e8bd
54 Neebbf62d7f3a41bdb292bca99e893138
55 Nfb5b93121c0f4d82ab1fdb60169d2d4b
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033096409
57 https://doi.org/10.1186/1471-2105-13-162
58 schema:sdDatePublished 2019-04-11T10:28
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N75cffae1eea7419c826d9a803d7204b3
61 schema:url https://link.springer.com/10.1186%2F1471-2105-13-162
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N04da0810275648e0aee8fd86683273a4 rdf:first sg:person.012121030415.96
66 rdf:rest N7562ca9288904f20ad40f57483b88747
67 N1b3856de05104006a05ba7469bd10451 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Ligands
69 rdf:type schema:DefinedTerm
70 N2426b526b90e44e8a5058918ec4276bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Artificial Intelligence
72 rdf:type schema:DefinedTerm
73 N30f2dcb3d4b6412bbd2a5c1cd92ee311 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Hexoses
75 rdf:type schema:DefinedTerm
76 N41a3da18305544879d947c21b2fee3a7 schema:name dimensions_id
77 schema:value pub.1033096409
78 rdf:type schema:PropertyValue
79 N63a43e648dce4345880a51ae00ffbe53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Proteins
81 rdf:type schema:DefinedTerm
82 N7562ca9288904f20ad40f57483b88747 rdf:first sg:person.01356571250.44
83 rdf:rest Ncd33aa94125a44ef808f70b713a4aca3
84 N75cffae1eea7419c826d9a803d7204b3 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N7edf335d66604d329d3031320d0bdd00 schema:name nlm_unique_id
87 schema:value 100965194
88 rdf:type schema:PropertyValue
89 N7f605ded468e42c2afe800161f0ac1f0 schema:volumeNumber 13
90 rdf:type schema:PublicationVolume
91 N97599f2f3db7404189c1ff500585e8bd schema:name pubmed_id
92 schema:value 22783946
93 rdf:type schema:PropertyValue
94 N975e80b1a83b422dbea1f5536601f7a0 rdf:first sg:person.0611736450.97
95 rdf:rest rdf:nil
96 Na818361a4a2641c68f8b8bd5d4d1a4fe schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Naff3c08534d04db19651c6fe9439685b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Protein Binding
100 rdf:type schema:DefinedTerm
101 Ncd33aa94125a44ef808f70b713a4aca3 rdf:first sg:person.0633165150.01
102 rdf:rest Nee3a241d6fd745548e0e1281d71da1cf
103 Nee3a241d6fd745548e0e1281d71da1cf rdf:first sg:person.01125137176.85
104 rdf:rest N975e80b1a83b422dbea1f5536601f7a0
105 Neebbf62d7f3a41bdb292bca99e893138 schema:name doi
106 schema:value 10.1186/1471-2105-13-162
107 rdf:type schema:PropertyValue
108 Nfb5b93121c0f4d82ab1fdb60169d2d4b schema:name readcube_id
109 schema:value 9daa922de23aefd4b86c1f741be066e0397df6b9da12e54d24270d0e0ec12d30
110 rdf:type schema:PropertyValue
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:grant.2479279 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-13-162
118 rdf:type schema:MonetaryGrant
119 sg:grant.3627094 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-13-162
120 rdf:type schema:MonetaryGrant
121 sg:journal.1023786 schema:issn 1471-2105
122 schema:name BMC Bioinformatics
123 rdf:type schema:Periodical
124 sg:person.01125137176.85 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
125 schema:familyName Muggleton
126 schema:givenName Stephen H
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125137176.85
128 rdf:type schema:Person
129 sg:person.012121030415.96 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
130 schema:familyName A Santos
131 schema:givenName Jose C
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012121030415.96
133 rdf:type schema:Person
134 sg:person.01356571250.44 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
135 schema:familyName Nassif
136 schema:givenName Houssam
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356571250.44
138 rdf:type schema:Person
139 sg:person.0611736450.97 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
140 schema:familyName E Sternberg
141 schema:givenName Michael J
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97
143 rdf:type schema:Person
144 sg:person.0633165150.01 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
145 schema:familyName Page
146 schema:givenName David
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633165150.01
148 rdf:type schema:Person
149 sg:pub.10.1007/3540635149_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050437600
150 https://doi.org/10.1007/3540635149_56
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-540-89982-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053384267
153 https://doi.org/10.1007/978-3-540-89982-2_1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/978-3-642-13840-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017918768
156 https://doi.org/10.1007/978-3-642-13840-9_13
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-642-13840-9_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010144147
159 https://doi.org/10.1007/978-3-642-13840-9_14
160 rdf:type schema:CreativeWork
161 sg:pub.10.1023/a:1007460424845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049786310
162 https://doi.org/10.1023/a:1007460424845
163 rdf:type schema:CreativeWork
164 sg:pub.10.1023/a:1008280620621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050540325
165 https://doi.org/10.1023/a:1008280620621
166 rdf:type schema:CreativeWork
167 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
168 https://doi.org/10.1023/a:1010933404324
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1471-2105-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156594
171 https://doi.org/10.1186/1471-2105-7-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1472-6807-10-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038353989
174 https://doi.org/10.1186/1472-6807-10-23
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1472-6807-7-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051028633
177 https://doi.org/10.1186/1472-6807-7-1
178 rdf:type schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1078493577 schema:CreativeWork
180 https://doi.org/10.1002/anie.200605116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011909268
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/prot.10612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035008782
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/prot.22424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014586075
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/prot.22639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000255487
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0004-3702(71)90012-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043429023
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jmb.2005.11.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035150848
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0141-8130(98)00056-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016403375
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0969-2126(97)00260-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052608197
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/bi035430r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055197802
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1042/bj20040892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000811159
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.0504023102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009736851
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.87.15.5648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048402749
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/btg224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521598
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/nar/gkq398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004359016
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/protein/13.2.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045555471
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/protein/gzg065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036991465
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/34.824819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157039
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/cec.2010.5586110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094635720
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1110/ps.04812804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032143234
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
221 schema:name Department of Computer Sciences, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI-53706, Madison, USA
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
224 schema:name Centre for Bioinformatics, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
225 Computational Bioinformatics Laboratory, Department of Computer Science, Imperial College London, SW7 2BZ, London, UK
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...