SNP-based pathway enrichment analysis for genome-wide association studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Lingjie Weng, Fabio Macciardi, Aravind Subramanian, Guia Guffanti, Steven G Potkin, Zhaoxia Yu, Xiaohui Xie

ABSTRACT

BACKGROUND: Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs. RESULTS: We describe a SNP-based pathway enrichment method for GWAS studies. The method consists of the following two main steps: 1) for a given pathway, using an adaptive truncated product statistic to identify all representative (potentially more than one) SNPs of each gene, calculating the average number of representative SNPs for the genes, then re-selecting the representative SNPs of genes in the pathway based on this number; and 2) ranking all selected SNPs by the significance of their statistical association with a trait of interest, and testing if the set of SNPs from a particular pathway is significantly enriched with high ranks using a weighted Kolmogorov-Smirnov test. We applied our method to two large genetically distinct GWAS data sets of schizophrenia, one from European-American (EA) and the other from African-American (AA). In the EA data set, we found 22 pathways with nominal P-value less than or equal to 0.001 and corresponding false discovery rate (FDR) less than 5%. In the AA data set, we found 11 pathways by controlling the same nominal P-value and FDR threshold. Interestingly, 8 of these pathways overlap with those found in the EA sample. We have implemented our method in a JAVA software package, called SNP Set Enrichment Analysis (SSEA), which contains a user-friendly interface and is freely available at http://cbcl.ics.uci.edu/SSEA. CONCLUSIONS: The SNP-based pathway enrichment method described here offers a new alternative approach for analysing GWAS data. By applying it to schizophrenia GWAS studies, we show that our method is able to identify statistically significant pathways, and importantly, pathways that can be replicated in large genetically distinct samples. More... »

PAGES

99

References to SciGraph publications

  • 2007-06-07. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls in NATURE
  • 2007-09. New models of collaboration in genome-wide association studies: the Genetic Association Information Network in NATURE GENETICS
  • 2010-07. Long-term depression in the CNS in NATURE REVIEWS NEUROSCIENCE
  • 2007-05. Multiple regions within 8q24 independently affect risk for prostate cancer in NATURE GENETICS
  • 2010-01. Gene and pathway-based second-wave analysis of genome-wide association studies in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2008-12. Switch-like genes populate cell communication pathways and are enriched for extracellular proteins in BMC GENOMICS
  • 2009-01. The dystrobrevin-binding protein 1 gene: features and networks in MOLECULAR PSYCHIATRY
  • 2007-02. A genome-wide association study identifies novel risk loci for type 2 diabetes in NATURE
  • 2009-10. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility in NATURE GENETICS
  • 2009-08. Strategies and issues in the detection of pathway enrichment in genome-wide association studies in HUMAN GENETICS
  • 2008-10. Genetic association analysis of tagging SNPs in alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes (CHRNA4 and CHRNB2) with schizophrenia in the Japanese population in JOURNAL OF NEURAL TRANSMISSION
  • 2007-02. Human genetics: Variants in common diseases in NATURE
  • 2007-10. The NCBI dbGaP database of genotypes and phenotypes in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-12-99

    DOI

    http://dx.doi.org/10.1186/1471-2105-12-99

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030412046

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21496265


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linkage Disequilibrium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Research Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Schizophrenia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Irvine", 
              "id": "https://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Computer Science, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weng", 
            "givenName": "Lingjie", 
            "id": "sg:person.01235667466.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235667466.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Irvine", 
              "id": "https://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Psychiatry & Human Behaviour, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Macciardi", 
            "givenName": "Fabio", 
            "id": "sg:person.0660135512.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660135512.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute", 
              "id": "https://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Subramanian", 
            "givenName": "Aravind", 
            "id": "sg:person.01133526776.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133526776.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Irvine", 
              "id": "https://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Psychiatry & Human Behaviour, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guffanti", 
            "givenName": "Guia", 
            "id": "sg:person.0724405105.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724405105.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Irvine", 
              "id": "https://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Psychiatry & Human Behaviour, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Potkin", 
            "givenName": "Steven G", 
            "id": "sg:person.014112106737.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014112106737.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Irvine", 
              "id": "https://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Statistics, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Zhaoxia", 
            "id": "sg:person.016422476367.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422476367.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Irvine", 
              "id": "https://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Computer Science, University of California, Irvine, CA, USA", 
                "Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Xiaohui", 
            "id": "sg:person.01114736434.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114736434.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pone.0003745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001341993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1155174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002313924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002828587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004556449", 
              "https://doi.org/10.1038/nature05911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006536603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006536603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007021292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddp120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009789736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddp120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009789736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-14-3-edb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011233451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015848569", 
              "https://doi.org/10.1038/ng2127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016916589", 
              "https://doi.org/10.1038/nature05568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017305614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018455308", 
              "https://doi.org/10.1038/ng2015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018455308", 
              "https://doi.org/10.1038/ng2015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmp0806284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019122643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021836411", 
              "https://doi.org/10.1186/1471-2164-9-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.88.3.839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022110988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022931325", 
              "https://doi.org/10.1038/nature05616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2008.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024342590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archpsyc.1988.01800270101012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028106209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2008.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029569696", 
              "https://doi.org/10.1038/mp.2008.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0676-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029596047", 
              "https://doi.org/10.1007/s00439-009-0676-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0676-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029596047", 
              "https://doi.org/10.1007/s00439-009-0676-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0676-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029596047", 
              "https://doi.org/10.1007/s00439-009-0676-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0676-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029596047", 
              "https://doi.org/10.1007/s00439-009-0676-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031073156", 
              "https://doi.org/10.1038/nrn2867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031073156", 
              "https://doi.org/10.1038/nrn2867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00702-008-0114-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031190487", 
              "https://doi.org/10.1007/s00702-008-0114-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00702-008-0114-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031190487", 
              "https://doi.org/10.1007/s00702-008-0114-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2009.05.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031607969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1007-1181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033997263", 
              "https://doi.org/10.1038/ng1007-1181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmp0808934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034119584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ede.0b013e3181a93b98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035593146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ede.0b013e3181a93b98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035593146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ede.0b013e3181a93b98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035593146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.02.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040075161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2009.11.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045407083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0896-6273(00)00111-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045435393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048989600", 
              "https://doi.org/10.1038/ng.448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048989600", 
              "https://doi.org/10.1038/ng.448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049400050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2009.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052601696", 
              "https://doi.org/10.1038/ejhg.2009.115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibtech.2005.05.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052641111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/522374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058793537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1124/mi.3.1.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062438339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1062438339", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1124/mi.3.1.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062438339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1142364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062456030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.271.5254.1380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062552405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.316.5833.1840c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062595569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1176/ajp.137.11.1410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063471495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4088/jcp.v65n0519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072208813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077440242", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs.\nRESULTS: We describe a SNP-based pathway enrichment method for GWAS studies. The method consists of the following two main steps: 1) for a given pathway, using an adaptive truncated product statistic to identify all representative (potentially more than one) SNPs of each gene, calculating the average number of representative SNPs for the genes, then re-selecting the representative SNPs of genes in the pathway based on this number; and 2) ranking all selected SNPs by the significance of their statistical association with a trait of interest, and testing if the set of SNPs from a particular pathway is significantly enriched with high ranks using a weighted Kolmogorov-Smirnov test. We applied our method to two large genetically distinct GWAS data sets of schizophrenia, one from European-American (EA) and the other from African-American (AA). In the EA data set, we found 22 pathways with nominal P-value less than or equal to 0.001 and corresponding false discovery rate (FDR) less than 5%. In the AA data set, we found 11 pathways by controlling the same nominal P-value and FDR threshold. Interestingly, 8 of these pathways overlap with those found in the EA sample. We have implemented our method in a JAVA software package, called SNP Set Enrichment Analysis (SSEA), which contains a user-friendly interface and is freely available at http://cbcl.ics.uci.edu/SSEA.\nCONCLUSIONS: The SNP-based pathway enrichment method described here offers a new alternative approach for analysing GWAS data. By applying it to schizophrenia GWAS studies, we show that our method is able to identify statistically significant pathways, and importantly, pathways that can be replicated in large genetically distinct samples.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-12-99", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "SNP-based pathway enrichment analysis for genome-wide association studies", 
        "pagination": "99", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "90e15a7ca710bac71a143b596c9525f3d1dcee0a71f6c72bb0db7ee8cec94202"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21496265"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-12-99"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030412046"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-12-99", 
          "https://app.dimensions.ai/details/publication/pub.1030412046"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000550.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/1471-2105-12-99"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-99'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-99'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-99'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-99'


     

    This table displays all metadata directly associated to this object as RDF triples.

    291 TRIPLES      21 PREDICATES      81 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-12-99 schema:about N0dca2c0078714577986414725a13afce
    2 N1160f10070a04ac6a8fd1b7993af1a02
    3 N44d7ef78f137405ea12ea781bba9bf7d
    4 N53226b725819451d989b9ae108b4b284
    5 N5c1c3f3a4f064bc380f6e8b5ce908986
    6 N9aaea2727b23416e8eb387c0a03271c5
    7 Nbd811ee6be3743f09b1625e939630559
    8 Nbdccf620e9ca45b88423c879d0c93cc1
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N2970cd236afa4719b926dc139bc20a58
    12 schema:citation sg:pub.10.1007/s00439-009-0676-z
    13 sg:pub.10.1007/s00702-008-0114-8
    14 sg:pub.10.1038/ejhg.2009.115
    15 sg:pub.10.1038/mp.2008.88
    16 sg:pub.10.1038/nature05568
    17 sg:pub.10.1038/nature05616
    18 sg:pub.10.1038/nature05911
    19 sg:pub.10.1038/ng.448
    20 sg:pub.10.1038/ng1007-1181
    21 sg:pub.10.1038/ng2015
    22 sg:pub.10.1038/ng2127
    23 sg:pub.10.1038/nrn2867
    24 sg:pub.10.1186/1471-2164-9-3
    25 https://app.dimensions.ai/details/publication/pub.1062438339
    26 https://app.dimensions.ai/details/publication/pub.1077440242
    27 https://doi.org/10.1001/archpsyc.1988.01800270101012
    28 https://doi.org/10.1002/gepi.20422
    29 https://doi.org/10.1016/j.ajhg.2009.05.011
    30 https://doi.org/10.1016/j.ajhg.2009.11.017
    31 https://doi.org/10.1016/j.ajhg.2010.02.020
    32 https://doi.org/10.1016/j.tibtech.2005.05.011
    33 https://doi.org/10.1016/j.ygeno.2008.07.011
    34 https://doi.org/10.1016/s0896-6273(00)00111-2
    35 https://doi.org/10.1056/nejmp0806284
    36 https://doi.org/10.1056/nejmp0808934
    37 https://doi.org/10.1073/pnas.0506580102
    38 https://doi.org/10.1073/pnas.88.3.839
    39 https://doi.org/10.1086/519795
    40 https://doi.org/10.1086/522374
    41 https://doi.org/10.1093/bioinformatics/btl328
    42 https://doi.org/10.1093/bioinformatics/btn516
    43 https://doi.org/10.1093/bioinformatics/btp448
    44 https://doi.org/10.1093/hmg/ddp120
    45 https://doi.org/10.1093/nar/28.1.27
    46 https://doi.org/10.1097/ede.0b013e3181a93b98
    47 https://doi.org/10.1124/mi.3.1.27
    48 https://doi.org/10.1126/science.1142364
    49 https://doi.org/10.1126/science.1155174
    50 https://doi.org/10.1126/science.271.5254.1380
    51 https://doi.org/10.1126/science.316.5833.1840c
    52 https://doi.org/10.1158/1055-9965.epi-14-3-edb
    53 https://doi.org/10.1176/ajp.137.11.1410
    54 https://doi.org/10.1371/journal.pone.0003745
    55 https://doi.org/10.4088/jcp.v65n0519
    56 schema:datePublished 2011-12
    57 schema:datePublishedReg 2011-12-01
    58 schema:description BACKGROUND: Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs. RESULTS: We describe a SNP-based pathway enrichment method for GWAS studies. The method consists of the following two main steps: 1) for a given pathway, using an adaptive truncated product statistic to identify all representative (potentially more than one) SNPs of each gene, calculating the average number of representative SNPs for the genes, then re-selecting the representative SNPs of genes in the pathway based on this number; and 2) ranking all selected SNPs by the significance of their statistical association with a trait of interest, and testing if the set of SNPs from a particular pathway is significantly enriched with high ranks using a weighted Kolmogorov-Smirnov test. We applied our method to two large genetically distinct GWAS data sets of schizophrenia, one from European-American (EA) and the other from African-American (AA). In the EA data set, we found 22 pathways with nominal P-value less than or equal to 0.001 and corresponding false discovery rate (FDR) less than 5%. In the AA data set, we found 11 pathways by controlling the same nominal P-value and FDR threshold. Interestingly, 8 of these pathways overlap with those found in the EA sample. We have implemented our method in a JAVA software package, called SNP Set Enrichment Analysis (SSEA), which contains a user-friendly interface and is freely available at http://cbcl.ics.uci.edu/SSEA. CONCLUSIONS: The SNP-based pathway enrichment method described here offers a new alternative approach for analysing GWAS data. By applying it to schizophrenia GWAS studies, we show that our method is able to identify statistically significant pathways, and importantly, pathways that can be replicated in large genetically distinct samples.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree true
    62 schema:isPartOf Ndd4c15f10d024ec6bd4a6778aa68068c
    63 Ne698f5bc0e4746ea8037f20cfd6f382b
    64 sg:journal.1023786
    65 schema:name SNP-based pathway enrichment analysis for genome-wide association studies
    66 schema:pagination 99
    67 schema:productId N0624148900094e93bc562f789d681620
    68 N0fdcf4ccbbc24f6fbbb99a180c2ae97c
    69 N974779af78a7475da10fde4b596fb313
    70 Nb7985f197dbc46b0acac0a5208da197a
    71 Nc6eb491108234e33b715b22d34c10d1e
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030412046
    73 https://doi.org/10.1186/1471-2105-12-99
    74 schema:sdDatePublished 2019-04-10T16:49
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N0fc557a5c8af4c6a9a6a557f3a2e3b49
    77 schema:url http://link.springer.com/10.1186/1471-2105-12-99
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N05d4682cca51465297777719d9a1f39e rdf:first sg:person.01133526776.30
    82 rdf:rest Ncb2d1fa73ad5478a83701b3e41750a48
    83 N0624148900094e93bc562f789d681620 schema:name readcube_id
    84 schema:value 90e15a7ca710bac71a143b596c9525f3d1dcee0a71f6c72bb0db7ee8cec94202
    85 rdf:type schema:PropertyValue
    86 N0dca2c0078714577986414725a13afce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Research Design
    88 rdf:type schema:DefinedTerm
    89 N0f8e59621a0e49598eb57abc252c7147 rdf:first sg:person.01114736434.74
    90 rdf:rest rdf:nil
    91 N0fc557a5c8af4c6a9a6a557f3a2e3b49 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N0fdcf4ccbbc24f6fbbb99a180c2ae97c schema:name dimensions_id
    94 schema:value pub.1030412046
    95 rdf:type schema:PropertyValue
    96 N1160f10070a04ac6a8fd1b7993af1a02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Genetic Variation
    98 rdf:type schema:DefinedTerm
    99 N1e7ecbec973e4aaab7624e1222be1902 rdf:first sg:person.016422476367.41
    100 rdf:rest N0f8e59621a0e49598eb57abc252c7147
    101 N2970cd236afa4719b926dc139bc20a58 rdf:first sg:person.01235667466.33
    102 rdf:rest Nd6e02ac856d34a9da3b0b7316009f1f0
    103 N44d7ef78f137405ea12ea781bba9bf7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Humans
    105 rdf:type schema:DefinedTerm
    106 N53226b725819451d989b9ae108b4b284 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Schizophrenia
    108 rdf:type schema:DefinedTerm
    109 N5c1c3f3a4f064bc380f6e8b5ce908986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Polymorphism, Single Nucleotide
    111 rdf:type schema:DefinedTerm
    112 N7927e0d7e05d4dfa8dd8d4af784904a1 rdf:first sg:person.014112106737.92
    113 rdf:rest N1e7ecbec973e4aaab7624e1222be1902
    114 N974779af78a7475da10fde4b596fb313 schema:name doi
    115 schema:value 10.1186/1471-2105-12-99
    116 rdf:type schema:PropertyValue
    117 N9aaea2727b23416e8eb387c0a03271c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Genome-Wide Association Study
    119 rdf:type schema:DefinedTerm
    120 Nb7985f197dbc46b0acac0a5208da197a schema:name pubmed_id
    121 schema:value 21496265
    122 rdf:type schema:PropertyValue
    123 Nbd811ee6be3743f09b1625e939630559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Software
    125 rdf:type schema:DefinedTerm
    126 Nbdccf620e9ca45b88423c879d0c93cc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Linkage Disequilibrium
    128 rdf:type schema:DefinedTerm
    129 Nc6eb491108234e33b715b22d34c10d1e schema:name nlm_unique_id
    130 schema:value 100965194
    131 rdf:type schema:PropertyValue
    132 Ncb2d1fa73ad5478a83701b3e41750a48 rdf:first sg:person.0724405105.45
    133 rdf:rest N7927e0d7e05d4dfa8dd8d4af784904a1
    134 Nd6e02ac856d34a9da3b0b7316009f1f0 rdf:first sg:person.0660135512.12
    135 rdf:rest N05d4682cca51465297777719d9a1f39e
    136 Ndd4c15f10d024ec6bd4a6778aa68068c schema:volumeNumber 12
    137 rdf:type schema:PublicationVolume
    138 Ne698f5bc0e4746ea8037f20cfd6f382b schema:issueNumber 1
    139 rdf:type schema:PublicationIssue
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Genetics
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1023786 schema:issn 1471-2105
    147 schema:name BMC Bioinformatics
    148 rdf:type schema:Periodical
    149 sg:person.01114736434.74 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
    150 schema:familyName Xie
    151 schema:givenName Xiaohui
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114736434.74
    153 rdf:type schema:Person
    154 sg:person.01133526776.30 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
    155 schema:familyName Subramanian
    156 schema:givenName Aravind
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133526776.30
    158 rdf:type schema:Person
    159 sg:person.01235667466.33 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
    160 schema:familyName Weng
    161 schema:givenName Lingjie
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235667466.33
    163 rdf:type schema:Person
    164 sg:person.014112106737.92 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
    165 schema:familyName Potkin
    166 schema:givenName Steven G
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014112106737.92
    168 rdf:type schema:Person
    169 sg:person.016422476367.41 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
    170 schema:familyName Yu
    171 schema:givenName Zhaoxia
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422476367.41
    173 rdf:type schema:Person
    174 sg:person.0660135512.12 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
    175 schema:familyName Macciardi
    176 schema:givenName Fabio
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660135512.12
    178 rdf:type schema:Person
    179 sg:person.0724405105.45 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
    180 schema:familyName Guffanti
    181 schema:givenName Guia
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724405105.45
    183 rdf:type schema:Person
    184 sg:pub.10.1007/s00439-009-0676-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029596047
    185 https://doi.org/10.1007/s00439-009-0676-z
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00702-008-0114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031190487
    188 https://doi.org/10.1007/s00702-008-0114-8
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/ejhg.2009.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601696
    191 https://doi.org/10.1038/ejhg.2009.115
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/mp.2008.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029569696
    194 https://doi.org/10.1038/mp.2008.88
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature05568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916589
    197 https://doi.org/10.1038/nature05568
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature05616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022931325
    200 https://doi.org/10.1038/nature05616
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
    203 https://doi.org/10.1038/nature05911
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ng.448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048989600
    206 https://doi.org/10.1038/ng.448
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ng1007-1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033997263
    209 https://doi.org/10.1038/ng1007-1181
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/ng2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018455308
    212 https://doi.org/10.1038/ng2015
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ng2127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015848569
    215 https://doi.org/10.1038/ng2127
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nrn2867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031073156
    218 https://doi.org/10.1038/nrn2867
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/1471-2164-9-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021836411
    221 https://doi.org/10.1186/1471-2164-9-3
    222 rdf:type schema:CreativeWork
    223 https://app.dimensions.ai/details/publication/pub.1062438339 schema:CreativeWork
    224 https://app.dimensions.ai/details/publication/pub.1077440242 schema:CreativeWork
    225 https://doi.org/10.1001/archpsyc.1988.01800270101012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028106209
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1002/gepi.20422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006536603
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.ajhg.2009.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031607969
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.ajhg.2009.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045407083
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.ajhg.2010.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040075161
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.tibtech.2005.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052641111
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.ygeno.2008.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024342590
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/s0896-6273(00)00111-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045435393
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1056/nejmp0806284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019122643
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1056/nejmp0808934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034119584
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1073/pnas.88.3.839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022110988
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1086/522374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058793537
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/bioinformatics/btl328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002828587
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1093/bioinformatics/btn516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049400050
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1093/bioinformatics/btp448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007021292
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1093/hmg/ddp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009789736
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1097/ede.0b013e3181a93b98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035593146
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1124/mi.3.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062438339
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1126/science.1142364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456030
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1126/science.1155174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002313924
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1126/science.271.5254.1380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552405
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1126/science.316.5833.1840c schema:sameAs https://app.dimensions.ai/details/publication/pub.1062595569
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1158/1055-9965.epi-14-3-edb schema:sameAs https://app.dimensions.ai/details/publication/pub.1011233451
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1176/ajp.137.11.1410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063471495
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1371/journal.pone.0003745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001341993
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.4088/jcp.v65n0519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072208813
    282 rdf:type schema:CreativeWork
    283 https://www.grid.ac/institutes/grid.266093.8 schema:alternateName University of California, Irvine
    284 schema:name Department of Computer Science, University of California, Irvine, CA, USA
    285 Department of Psychiatry & Human Behaviour, University of California, Irvine, CA, USA
    286 Department of Statistics, University of California, Irvine, CA, USA
    287 Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA
    288 rdf:type schema:Organization
    289 https://www.grid.ac/institutes/grid.66859.34 schema:alternateName Broad Institute
    290 schema:name Broad Institute of MIT and Harvard, Cambridge, MA, USA
    291 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...