Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Mattia CF Prosperi, Luciano Prosperi, Alessandro Bruselles, Isabella Abbate, Gabriella Rozera, Donatella Vincenti, Maria Carmela Solmone, Maria Rosaria Capobianchi, Giovanni Ulivi

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants. RESULTS: The reconstruction algorithm was applied to error-free simulated data and reconstructed a high percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to characterise different viral variants from distinct patients. CONCLUSIONS: The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed good performance both considering simulated data and real data, even in presence of sequencing errors. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-5

DOI

http://dx.doi.org/10.1186/1471-2105-12-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047755841

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21208435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatitis B virus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Clinic of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy", 
            "Department of Pathology, Immunology and Laboratory Medicine, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prosperi", 
        "givenName": "Mattia CF", 
        "id": "sg:person.010437702237.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437702237.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prosperi", 
        "givenName": "Luciano", 
        "id": "sg:person.01140572141.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140572141.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruselles", 
        "givenName": "Alessandro", 
        "id": "sg:person.01150340752.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150340752.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbate", 
        "givenName": "Isabella", 
        "id": "sg:person.01120216754.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120216754.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozera", 
        "givenName": "Gabriella", 
        "id": "sg:person.055537701.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.055537701.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vincenti", 
        "givenName": "Donatella", 
        "id": "sg:person.01174604772.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174604772.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solmone", 
        "givenName": "Maria Carmela", 
        "id": "sg:person.01320704465.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320704465.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Capobianchi", 
        "givenName": "Maria Rosaria", 
        "id": "sg:person.0757366405.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757366405.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roma Tre University", 
          "id": "https://www.grid.ac/institutes/grid.8509.4", 
          "name": [
            "Department of Computer Science and Automation, faculty of Computer Science Engineering, University of Roma TRE, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ulivi", 
        "givenName": "Giovanni", 
        "id": "sg:person.011575216241.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575216241.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0097-8485(01)00074-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000534119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79450-9_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006435465", 
          "https://doi.org/10.1007/978-3-540-79450-9_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79450-9_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006435465", 
          "https://doi.org/10.1007/978-3-540-79450-9_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0010024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007676578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010292273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010487515", 
          "https://doi.org/10.1007/bf01188580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010487515", 
          "https://doi.org/10.1007/bf01188580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(88)90007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012677419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.208902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015075717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0801523105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015533038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02008-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020626465", 
          "https://doi.org/10.1007/978-3-642-02008-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02008-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020626465", 
          "https://doi.org/10.1007/978-3-642-02008-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.02011-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021168978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027335183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.24.4992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029853192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.51.1.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030193447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030783427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6435207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033023123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2008.112789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036638280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036835767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2607(01)00194-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2607(01)00194-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037510125", 
          "https://doi.org/10.1186/gb-2007-8-7-r143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038683976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.077776.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040737496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042740345", 
          "https://doi.org/10.1038/nmeth.1184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470141243.ch4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044420789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.9.9.868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046849268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672670", 
          "https://doi.org/10.1038/nature06884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053256988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6468307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053620495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2009.0164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176345003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077599331", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812776136_0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096067221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants.\nRESULTS: The reconstruction algorithm was applied to error-free simulated data and reconstructed a high percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to characterise different viral variants from distinct patients.\nCONCLUSIONS: The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed good performance both considering simulated data and real data, even in presence of sequencing errors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-12-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3772265", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e37edd2fb3455c5f8277c29ecadfbb3ca37dcb4b18132d3a6df234c9922bbb9b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21208435"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047755841"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-5", 
      "https://app.dimensions.ai/details/publication/pub.1047755841"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-12-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      73 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-5 schema:about N13972d16f46b4d92971c2f1431354de0
2 N2c58a6f2458b4df4b2f05fa4637521ad
3 N2fe8f2df5c3646228378a537e32de919
4 N302d5d5720e144ee889a3864f9f14565
5 N37674bdbdbb3418fb60f152f48f99857
6 N4158281193764213a010dc96988c6290
7 N548021e4e5fd491f8410136c63ab241c
8 N7d3fd845858147e0beddf3a0941ad781
9 Naa36e810a0a142c3b6657b725f53bb34
10 Nad3536e9e9db4744b1309259db6fbb84
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N5f1f288700c24386bb7c0e52d91f82aa
14 schema:citation sg:pub.10.1007/978-3-540-79450-9_15
15 sg:pub.10.1007/978-3-642-02008-7_21
16 sg:pub.10.1007/bf01188580
17 sg:pub.10.1038/nature06884
18 sg:pub.10.1038/nmeth.1184
19 sg:pub.10.1038/nrg2626
20 sg:pub.10.1186/gb-2007-8-7-r143
21 https://app.dimensions.ai/details/publication/pub.1077599331
22 https://doi.org/10.1002/9780470141243.ch4
23 https://doi.org/10.1016/0022-2836(82)90398-9
24 https://doi.org/10.1016/0888-7543(88)90007-9
25 https://doi.org/10.1016/j.tig.2007.12.007
26 https://doi.org/10.1016/s0097-8485(01)00074-2
27 https://doi.org/10.1016/s0169-2607(01)00194-8
28 https://doi.org/10.1073/pnas.0801523105
29 https://doi.org/10.1089/cmb.2009.0164
30 https://doi.org/10.1093/bioinformatics/btn548
31 https://doi.org/10.1093/nar/23.24.4992
32 https://doi.org/10.1093/nar/gkm760
33 https://doi.org/10.1093/nar/gkp492
34 https://doi.org/10.1101/gr.077776.108
35 https://doi.org/10.1101/gr.078212.108
36 https://doi.org/10.1101/gr.208902
37 https://doi.org/10.1101/gr.6435207
38 https://doi.org/10.1101/gr.6468307
39 https://doi.org/10.1101/gr.9.9.868
40 https://doi.org/10.1126/science.287.5461.2196
41 https://doi.org/10.1128/jvi.02011-08
42 https://doi.org/10.1142/9789812776136_0013
43 https://doi.org/10.1146/annurev.micro.51.1.151
44 https://doi.org/10.1214/aos/1176345003
45 https://doi.org/10.1371/journal.pcbi.0010024
46 https://doi.org/10.1371/journal.pcbi.1000074
47 https://doi.org/10.1373/clinchem.2008.112789
48 schema:datePublished 2011-12
49 schema:datePublishedReg 2011-12-01
50 schema:description BACKGROUND: Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants. RESULTS: The reconstruction algorithm was applied to error-free simulated data and reconstructed a high percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to characterise different viral variants from distinct patients. CONCLUSIONS: The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed good performance both considering simulated data and real data, even in presence of sequencing errors.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N0dc7192bb79e426caf89146652cd19c9
55 Nd6ab82adeb0448ffa9202f7eac6392ff
56 sg:journal.1023786
57 schema:name Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing
58 schema:pagination 5
59 schema:productId N039e4863d8a8481296653afda79bf723
60 N253f890926594438bfcc4c6ca181b9c0
61 N57949113b6874418a73237dec48c865d
62 N584d268c53ed4f6b8f48306ba683c715
63 Nfb38a6b7c5b34c7ab48b5e083fd065ab
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047755841
65 https://doi.org/10.1186/1471-2105-12-5
66 schema:sdDatePublished 2019-04-10T19:56
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N1908d667bf0d4efba1bf06a108ff3b18
69 schema:url http://link.springer.com/10.1186/1471-2105-12-5
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N01aa94d179344e879ce72d6794470948 rdf:first sg:person.01320704465.59
74 rdf:rest N3d79786dc29f42e39033886ea7b17ce4
75 N039e4863d8a8481296653afda79bf723 schema:name dimensions_id
76 schema:value pub.1047755841
77 rdf:type schema:PropertyValue
78 N0dc7192bb79e426caf89146652cd19c9 schema:volumeNumber 12
79 rdf:type schema:PublicationVolume
80 N13972d16f46b4d92971c2f1431354de0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Genetic Variation
82 rdf:type schema:DefinedTerm
83 N1908d667bf0d4efba1bf06a108ff3b18 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N253f890926594438bfcc4c6ca181b9c0 schema:name nlm_unique_id
86 schema:value 100965194
87 rdf:type schema:PropertyValue
88 N2c58a6f2458b4df4b2f05fa4637521ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Genomics
90 rdf:type schema:DefinedTerm
91 N2fe8f2df5c3646228378a537e32de919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Algorithms
93 rdf:type schema:DefinedTerm
94 N302d5d5720e144ee889a3864f9f14565 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Computer Simulation
96 rdf:type schema:DefinedTerm
97 N345c76be556d4b33a059b6ff35bcd757 rdf:first sg:person.01120216754.10
98 rdf:rest Nc2394ce453cf4083b28f32bf7b6d843e
99 N37674bdbdbb3418fb60f152f48f99857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Phylogeny
101 rdf:type schema:DefinedTerm
102 N3d79786dc29f42e39033886ea7b17ce4 rdf:first sg:person.0757366405.10
103 rdf:rest N8cde64f8dc53455993b7d8438c9ee0fd
104 N4158281193764213a010dc96988c6290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Hepatitis B virus
106 rdf:type schema:DefinedTerm
107 N4b7573a4ed4341e6a750278fdefb16af rdf:first sg:person.01150340752.62
108 rdf:rest N345c76be556d4b33a059b6ff35bcd757
109 N548021e4e5fd491f8410136c63ab241c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Software
111 rdf:type schema:DefinedTerm
112 N57949113b6874418a73237dec48c865d schema:name pubmed_id
113 schema:value 21208435
114 rdf:type schema:PropertyValue
115 N584d268c53ed4f6b8f48306ba683c715 schema:name doi
116 schema:value 10.1186/1471-2105-12-5
117 rdf:type schema:PropertyValue
118 N5f1f288700c24386bb7c0e52d91f82aa rdf:first sg:person.010437702237.97
119 rdf:rest Nd9b9d8d56584470daab494d4d63810fa
120 N7d3fd845858147e0beddf3a0941ad781 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 N8cde64f8dc53455993b7d8438c9ee0fd rdf:first sg:person.011575216241.75
124 rdf:rest rdf:nil
125 Naa36e810a0a142c3b6657b725f53bb34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Genome, Viral
127 rdf:type schema:DefinedTerm
128 Nad3536e9e9db4744b1309259db6fbb84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Sequence Analysis, DNA
130 rdf:type schema:DefinedTerm
131 Nc2394ce453cf4083b28f32bf7b6d843e rdf:first sg:person.055537701.91
132 rdf:rest Nd328dcccce7741c292c7e5c6dfbff248
133 Nd328dcccce7741c292c7e5c6dfbff248 rdf:first sg:person.01174604772.21
134 rdf:rest N01aa94d179344e879ce72d6794470948
135 Nd6ab82adeb0448ffa9202f7eac6392ff schema:issueNumber 1
136 rdf:type schema:PublicationIssue
137 Nd9b9d8d56584470daab494d4d63810fa rdf:first sg:person.01140572141.89
138 rdf:rest N4b7573a4ed4341e6a750278fdefb16af
139 Nfb38a6b7c5b34c7ab48b5e083fd065ab schema:name readcube_id
140 schema:value e37edd2fb3455c5f8277c29ecadfbb3ca37dcb4b18132d3a6df234c9922bbb9b
141 rdf:type schema:PropertyValue
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
146 schema:name Genetics
147 rdf:type schema:DefinedTerm
148 sg:grant.3772265 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-5
149 rdf:type schema:MonetaryGrant
150 sg:journal.1023786 schema:issn 1471-2105
151 schema:name BMC Bioinformatics
152 rdf:type schema:Periodical
153 sg:person.010437702237.97 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
154 schema:familyName Prosperi
155 schema:givenName Mattia CF
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437702237.97
157 rdf:type schema:Person
158 sg:person.01120216754.10 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
159 schema:familyName Abbate
160 schema:givenName Isabella
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120216754.10
162 rdf:type schema:Person
163 sg:person.01140572141.89 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
164 schema:familyName Prosperi
165 schema:givenName Luciano
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140572141.89
167 rdf:type schema:Person
168 sg:person.01150340752.62 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
169 schema:familyName Bruselles
170 schema:givenName Alessandro
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150340752.62
172 rdf:type schema:Person
173 sg:person.011575216241.75 schema:affiliation https://www.grid.ac/institutes/grid.8509.4
174 schema:familyName Ulivi
175 schema:givenName Giovanni
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575216241.75
177 rdf:type schema:Person
178 sg:person.01174604772.21 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
179 schema:familyName Vincenti
180 schema:givenName Donatella
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174604772.21
182 rdf:type schema:Person
183 sg:person.01320704465.59 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
184 schema:familyName Solmone
185 schema:givenName Maria Carmela
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320704465.59
187 rdf:type schema:Person
188 sg:person.055537701.91 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
189 schema:familyName Rozera
190 schema:givenName Gabriella
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.055537701.91
192 rdf:type schema:Person
193 sg:person.0757366405.10 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
194 schema:familyName Capobianchi
195 schema:givenName Maria Rosaria
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757366405.10
197 rdf:type schema:Person
198 sg:pub.10.1007/978-3-540-79450-9_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006435465
199 https://doi.org/10.1007/978-3-540-79450-9_15
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/978-3-642-02008-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020626465
202 https://doi.org/10.1007/978-3-642-02008-7_21
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/bf01188580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010487515
205 https://doi.org/10.1007/bf01188580
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
208 https://doi.org/10.1038/nature06884
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
211 https://doi.org/10.1038/nmeth.1184
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
214 https://doi.org/10.1038/nrg2626
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
217 https://doi.org/10.1186/gb-2007-8-7-r143
218 rdf:type schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1077599331 schema:CreativeWork
220 https://doi.org/10.1002/9780470141243.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044420789
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/0888-7543(88)90007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012677419
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0097-8485(01)00074-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000534119
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0169-2607(01)00194-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037157812
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0801523105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015533038
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1089/cmb.2009.0164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245861
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btn548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036835767
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/23.24.4992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029853192
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkm760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053256988
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/gkp492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038683976
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1101/gr.077776.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040737496
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1101/gr.208902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015075717
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1101/gr.6435207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033023123
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1101/gr.6468307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620495
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1101/gr.9.9.868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046849268
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.287.5461.2196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030783427
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1128/jvi.02011-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021168978
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1142/9789812776136_0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096067221
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1146/annurev.micro.51.1.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030193447
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1214/aos/1176345003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407639
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pcbi.0010024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007676578
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1371/journal.pcbi.1000074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010292273
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1373/clinchem.2008.112789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036638280
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
273 schema:name Clinic of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy
274 Department of Pathology, Immunology and Laboratory Medicine, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.419423.9 schema:alternateName Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani
277 schema:name Department of Virology, National Institute for Infectious Diseases "L. Spallanzani", Rome, Italy
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.8509.4 schema:alternateName Roma Tre University
280 schema:name Department of Computer Science and Automation, faculty of Computer Science Engineering, University of Roma TRE, Rome, Italy
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...