Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Mattia CF Prosperi, Luciano Prosperi, Alessandro Bruselles, Isabella Abbate, Gabriella Rozera, Donatella Vincenti, Maria Carmela Solmone, Maria Rosaria Capobianchi, Giovanni Ulivi

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants. RESULTS: The reconstruction algorithm was applied to error-free simulated data and reconstructed a high percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to characterise different viral variants from distinct patients. CONCLUSIONS: The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed good performance both considering simulated data and real data, even in presence of sequencing errors. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-5

DOI

http://dx.doi.org/10.1186/1471-2105-12-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047755841

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21208435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatitis B virus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Clinic of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy", 
            "Department of Pathology, Immunology and Laboratory Medicine, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prosperi", 
        "givenName": "Mattia CF", 
        "id": "sg:person.010437702237.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437702237.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prosperi", 
        "givenName": "Luciano", 
        "id": "sg:person.01140572141.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140572141.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruselles", 
        "givenName": "Alessandro", 
        "id": "sg:person.01150340752.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150340752.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbate", 
        "givenName": "Isabella", 
        "id": "sg:person.01120216754.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120216754.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozera", 
        "givenName": "Gabriella", 
        "id": "sg:person.055537701.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.055537701.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vincenti", 
        "givenName": "Donatella", 
        "id": "sg:person.01174604772.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174604772.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solmone", 
        "givenName": "Maria Carmela", 
        "id": "sg:person.01320704465.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320704465.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Department of Virology, National Institute for Infectious Diseases \"L. Spallanzani\", Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Capobianchi", 
        "givenName": "Maria Rosaria", 
        "id": "sg:person.0757366405.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757366405.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roma Tre University", 
          "id": "https://www.grid.ac/institutes/grid.8509.4", 
          "name": [
            "Department of Computer Science and Automation, faculty of Computer Science Engineering, University of Roma TRE, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ulivi", 
        "givenName": "Giovanni", 
        "id": "sg:person.011575216241.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575216241.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0097-8485(01)00074-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000534119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79450-9_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006435465", 
          "https://doi.org/10.1007/978-3-540-79450-9_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79450-9_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006435465", 
          "https://doi.org/10.1007/978-3-540-79450-9_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0010024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007676578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010292273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010487515", 
          "https://doi.org/10.1007/bf01188580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010487515", 
          "https://doi.org/10.1007/bf01188580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(88)90007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012677419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.208902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015075717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0801523105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015533038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02008-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020626465", 
          "https://doi.org/10.1007/978-3-642-02008-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02008-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020626465", 
          "https://doi.org/10.1007/978-3-642-02008-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.02011-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021168978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027335183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.24.4992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029853192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.51.1.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030193447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030783427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6435207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033023123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2008.112789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036638280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036835767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2607(01)00194-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2607(01)00194-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037510125", 
          "https://doi.org/10.1186/gb-2007-8-7-r143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038683976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.077776.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040737496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042740345", 
          "https://doi.org/10.1038/nmeth.1184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470141243.ch4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044420789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.9.9.868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046849268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672670", 
          "https://doi.org/10.1038/nature06884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053256988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6468307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053620495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2009.0164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176345003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077599331", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812776136_0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096067221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants.\nRESULTS: The reconstruction algorithm was applied to error-free simulated data and reconstructed a high percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to characterise different viral variants from distinct patients.\nCONCLUSIONS: The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed good performance both considering simulated data and real data, even in presence of sequencing errors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-12-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3772265", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e37edd2fb3455c5f8277c29ecadfbb3ca37dcb4b18132d3a6df234c9922bbb9b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21208435"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047755841"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-5", 
      "https://app.dimensions.ai/details/publication/pub.1047755841"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-12-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-5'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      73 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-5 schema:about N0f753dc21f5440d4a052b0e4db1fda22
2 N12f5b787d1694c5dbadac7e94fae41f5
3 N43d473018d994eec94485a702f5790ef
4 N768ef08283b8420da8d1f37c30354d55
5 N7ae1945fc75c495e8c743f1e6c428fb3
6 N926fb3c2f2964b1983e7f8ccd744a6f7
7 N9466bf74dfe24edcb41fe93a75013b8f
8 Nc2df7a1cf6b94710add05d44edd10903
9 Nce01921a3da74fd0b48dc981a0b7c050
10 Nd290905e9dde431c90265e68b05e40a1
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Ne0254e6888984ef6bcb6da1ae4d2e550
14 schema:citation sg:pub.10.1007/978-3-540-79450-9_15
15 sg:pub.10.1007/978-3-642-02008-7_21
16 sg:pub.10.1007/bf01188580
17 sg:pub.10.1038/nature06884
18 sg:pub.10.1038/nmeth.1184
19 sg:pub.10.1038/nrg2626
20 sg:pub.10.1186/gb-2007-8-7-r143
21 https://app.dimensions.ai/details/publication/pub.1077599331
22 https://doi.org/10.1002/9780470141243.ch4
23 https://doi.org/10.1016/0022-2836(82)90398-9
24 https://doi.org/10.1016/0888-7543(88)90007-9
25 https://doi.org/10.1016/j.tig.2007.12.007
26 https://doi.org/10.1016/s0097-8485(01)00074-2
27 https://doi.org/10.1016/s0169-2607(01)00194-8
28 https://doi.org/10.1073/pnas.0801523105
29 https://doi.org/10.1089/cmb.2009.0164
30 https://doi.org/10.1093/bioinformatics/btn548
31 https://doi.org/10.1093/nar/23.24.4992
32 https://doi.org/10.1093/nar/gkm760
33 https://doi.org/10.1093/nar/gkp492
34 https://doi.org/10.1101/gr.077776.108
35 https://doi.org/10.1101/gr.078212.108
36 https://doi.org/10.1101/gr.208902
37 https://doi.org/10.1101/gr.6435207
38 https://doi.org/10.1101/gr.6468307
39 https://doi.org/10.1101/gr.9.9.868
40 https://doi.org/10.1126/science.287.5461.2196
41 https://doi.org/10.1128/jvi.02011-08
42 https://doi.org/10.1142/9789812776136_0013
43 https://doi.org/10.1146/annurev.micro.51.1.151
44 https://doi.org/10.1214/aos/1176345003
45 https://doi.org/10.1371/journal.pcbi.0010024
46 https://doi.org/10.1371/journal.pcbi.1000074
47 https://doi.org/10.1373/clinchem.2008.112789
48 schema:datePublished 2011-12
49 schema:datePublishedReg 2011-12-01
50 schema:description BACKGROUND: Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants. RESULTS: The reconstruction algorithm was applied to error-free simulated data and reconstructed a high percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to characterise different viral variants from distinct patients. CONCLUSIONS: The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed good performance both considering simulated data and real data, even in presence of sequencing errors.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N4fc346b657434b7ea7ab207b54745666
55 N7884faa79e02416f9df75d0c75b075ff
56 sg:journal.1023786
57 schema:name Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing
58 schema:pagination 5
59 schema:productId N470a82d9cc3e423fbd74f34e55302ae3
60 N999b07a18844451abb23c836e671883c
61 Nae06111a9cb048e8b65b2fc7cfdfb81d
62 Nde1013fb7c26419093623795dc0748f6
63 Ned0fbd144f4f49dbac6c965212157c88
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047755841
65 https://doi.org/10.1186/1471-2105-12-5
66 schema:sdDatePublished 2019-04-10T19:56
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Na7750a9409394798a03721dce503b76e
69 schema:url http://link.springer.com/10.1186/1471-2105-12-5
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0f753dc21f5440d4a052b0e4db1fda22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Hepatitis B virus
75 rdf:type schema:DefinedTerm
76 N12c7564bbbf84cc49b1802bc2d9cd965 rdf:first sg:person.01150340752.62
77 rdf:rest N570a8b83db8b4e7baa6bda00d3ce8680
78 N12f5b787d1694c5dbadac7e94fae41f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Computer Simulation
80 rdf:type schema:DefinedTerm
81 N16085f5ca95c43c2bca2ee70a5f48029 rdf:first sg:person.01140572141.89
82 rdf:rest N12c7564bbbf84cc49b1802bc2d9cd965
83 N388e8fc414b34997857fbe94b6ed7768 rdf:first sg:person.01320704465.59
84 rdf:rest N9b4747bda76c4526998c36bb5a231def
85 N43d473018d994eec94485a702f5790ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Phylogeny
87 rdf:type schema:DefinedTerm
88 N4500d8a456e445db91537ee7da2c3154 rdf:first sg:person.055537701.91
89 rdf:rest N7a483e7d694c48fe9db89bb7a89fb70b
90 N470a82d9cc3e423fbd74f34e55302ae3 schema:name nlm_unique_id
91 schema:value 100965194
92 rdf:type schema:PropertyValue
93 N4fc346b657434b7ea7ab207b54745666 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N570a8b83db8b4e7baa6bda00d3ce8680 rdf:first sg:person.01120216754.10
96 rdf:rest N4500d8a456e445db91537ee7da2c3154
97 N768ef08283b8420da8d1f37c30354d55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Genomics
99 rdf:type schema:DefinedTerm
100 N7884faa79e02416f9df75d0c75b075ff schema:volumeNumber 12
101 rdf:type schema:PublicationVolume
102 N7a483e7d694c48fe9db89bb7a89fb70b rdf:first sg:person.01174604772.21
103 rdf:rest N388e8fc414b34997857fbe94b6ed7768
104 N7ae1945fc75c495e8c743f1e6c428fb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Software
106 rdf:type schema:DefinedTerm
107 N926fb3c2f2964b1983e7f8ccd744a6f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genetic Variation
109 rdf:type schema:DefinedTerm
110 N9466bf74dfe24edcb41fe93a75013b8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Sequence Analysis, DNA
112 rdf:type schema:DefinedTerm
113 N999b07a18844451abb23c836e671883c schema:name dimensions_id
114 schema:value pub.1047755841
115 rdf:type schema:PropertyValue
116 N9b4747bda76c4526998c36bb5a231def rdf:first sg:person.0757366405.10
117 rdf:rest Nc42934f9f11846d09310baf78c34b2fc
118 Na7750a9409394798a03721dce503b76e schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nae06111a9cb048e8b65b2fc7cfdfb81d schema:name doi
121 schema:value 10.1186/1471-2105-12-5
122 rdf:type schema:PropertyValue
123 Nc2df7a1cf6b94710add05d44edd10903 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Nc42934f9f11846d09310baf78c34b2fc rdf:first sg:person.011575216241.75
127 rdf:rest rdf:nil
128 Nce01921a3da74fd0b48dc981a0b7c050 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Genome, Viral
130 rdf:type schema:DefinedTerm
131 Nd290905e9dde431c90265e68b05e40a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Algorithms
133 rdf:type schema:DefinedTerm
134 Nde1013fb7c26419093623795dc0748f6 schema:name readcube_id
135 schema:value e37edd2fb3455c5f8277c29ecadfbb3ca37dcb4b18132d3a6df234c9922bbb9b
136 rdf:type schema:PropertyValue
137 Ne0254e6888984ef6bcb6da1ae4d2e550 rdf:first sg:person.010437702237.97
138 rdf:rest N16085f5ca95c43c2bca2ee70a5f48029
139 Ned0fbd144f4f49dbac6c965212157c88 schema:name pubmed_id
140 schema:value 21208435
141 rdf:type schema:PropertyValue
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
146 schema:name Genetics
147 rdf:type schema:DefinedTerm
148 sg:grant.3772265 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-5
149 rdf:type schema:MonetaryGrant
150 sg:journal.1023786 schema:issn 1471-2105
151 schema:name BMC Bioinformatics
152 rdf:type schema:Periodical
153 sg:person.010437702237.97 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
154 schema:familyName Prosperi
155 schema:givenName Mattia CF
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437702237.97
157 rdf:type schema:Person
158 sg:person.01120216754.10 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
159 schema:familyName Abbate
160 schema:givenName Isabella
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120216754.10
162 rdf:type schema:Person
163 sg:person.01140572141.89 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
164 schema:familyName Prosperi
165 schema:givenName Luciano
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140572141.89
167 rdf:type schema:Person
168 sg:person.01150340752.62 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
169 schema:familyName Bruselles
170 schema:givenName Alessandro
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150340752.62
172 rdf:type schema:Person
173 sg:person.011575216241.75 schema:affiliation https://www.grid.ac/institutes/grid.8509.4
174 schema:familyName Ulivi
175 schema:givenName Giovanni
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575216241.75
177 rdf:type schema:Person
178 sg:person.01174604772.21 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
179 schema:familyName Vincenti
180 schema:givenName Donatella
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174604772.21
182 rdf:type schema:Person
183 sg:person.01320704465.59 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
184 schema:familyName Solmone
185 schema:givenName Maria Carmela
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320704465.59
187 rdf:type schema:Person
188 sg:person.055537701.91 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
189 schema:familyName Rozera
190 schema:givenName Gabriella
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.055537701.91
192 rdf:type schema:Person
193 sg:person.0757366405.10 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
194 schema:familyName Capobianchi
195 schema:givenName Maria Rosaria
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757366405.10
197 rdf:type schema:Person
198 sg:pub.10.1007/978-3-540-79450-9_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006435465
199 https://doi.org/10.1007/978-3-540-79450-9_15
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/978-3-642-02008-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020626465
202 https://doi.org/10.1007/978-3-642-02008-7_21
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/bf01188580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010487515
205 https://doi.org/10.1007/bf01188580
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
208 https://doi.org/10.1038/nature06884
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
211 https://doi.org/10.1038/nmeth.1184
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
214 https://doi.org/10.1038/nrg2626
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
217 https://doi.org/10.1186/gb-2007-8-7-r143
218 rdf:type schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1077599331 schema:CreativeWork
220 https://doi.org/10.1002/9780470141243.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044420789
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/0888-7543(88)90007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012677419
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0097-8485(01)00074-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000534119
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0169-2607(01)00194-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037157812
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0801523105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015533038
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1089/cmb.2009.0164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245861
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btn548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036835767
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/23.24.4992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029853192
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkm760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053256988
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/gkp492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038683976
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1101/gr.077776.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040737496
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1101/gr.208902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015075717
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1101/gr.6435207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033023123
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1101/gr.6468307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620495
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1101/gr.9.9.868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046849268
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.287.5461.2196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030783427
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1128/jvi.02011-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021168978
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1142/9789812776136_0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096067221
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1146/annurev.micro.51.1.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030193447
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1214/aos/1176345003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407639
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pcbi.0010024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007676578
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1371/journal.pcbi.1000074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010292273
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1373/clinchem.2008.112789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036638280
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
273 schema:name Clinic of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy
274 Department of Pathology, Immunology and Laboratory Medicine, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.419423.9 schema:alternateName Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani
277 schema:name Department of Virology, National Institute for Infectious Diseases "L. Spallanzani", Rome, Italy
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.8509.4 schema:alternateName Roma Tre University
280 schema:name Department of Computer Science and Automation, faculty of Computer Science Engineering, University of Roma TRE, Rome, Italy
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...