ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11-16

AUTHORS

Alyssa C Frazee, Ben Langmead, Jeffrey T Leek

ABSTRACT

1 BackgroundRNA sequencing is a flexible and powerful new approach for measuring gene, exon, or isoform expression. To maximize the utility of RNA sequencing data, new statistical methods are needed for clustering, differential expression, and other analyses. A major barrier to the development of new statistical methods is the lack of RNA sequencing datasets that can be easily obtained and analyzed in common statistical software packages such as R. To speed up the development process, we have created a resource of analysis-ready RNA-sequencing datasets.2 DescriptionReCount is an online resource of RNA-seq gene count tables and auxilliary data. Tables were built from raw RNA sequencing data from 18 different published studies comprising 475 samples and over 8 billion reads. Using the Myrna package, reads were aligned, overlapped with gene models and tabulated into gene-by-sample count tables that are ready for statistical analysis. Count tables and phenotype data were combined into Bioconductor ExpressionSet objects for ease of analysis. ReCount also contains the Myrna manifest files and R source code used to process the samples, allowing statistical and computational scientists to consider alternative parameter values.3 ConclusionsBy combining datasets from many studies and providing data that has already been processed from. fastq format into ready-to-use. RData and. txt files, ReCount facilitates analysis and methods development for RNA-seq count data. We anticipate that ReCount will also be useful for investigators who wish to consider cross-study comparisons and alternative normalization strategies for RNA-seq. More... »

PAGES

449

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-449

DOI

http://dx.doi.org/10.1186/1471-2105-12-449

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032929685

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22087737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frazee", 
        "givenName": "Alyssa C", 
        "id": "sg:person.01322773346.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322773346.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langmead", 
        "givenName": "Ben", 
        "id": "sg:person.011763134307.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763134307.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leek", 
        "givenName": "Jeffrey T", 
        "id": "sg:person.01140612747.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140612747.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature08903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001350952", 
          "https://doi.org/10.1038/nature08903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031240109", 
          "https://doi.org/10.1038/nature09715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029002744", 
          "https://doi.org/10.1038/nature07509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030579983", 
          "https://doi.org/10.1038/nbt.1910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044630803", 
          "https://doi.org/10.1038/nature08872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-8-r83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039544540", 
          "https://doi.org/10.1186/gb-2010-11-8-r83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053091615", 
          "https://doi.org/10.1186/1471-2105-11-94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051601706", 
          "https://doi.org/10.1038/ng1955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047715940", 
          "https://doi.org/10.1038/nmeth.1528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-5-207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011746478", 
          "https://doi.org/10.1186/gb-2010-11-5-207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11-16", 
    "datePublishedReg": "2011-11-16", 
    "description": "Abstract1 BackgroundRNA sequencing is a flexible and powerful new approach for measuring gene, exon, or isoform expression. To maximize the utility of RNA sequencing data, new statistical methods are needed for clustering, differential expression, and other analyses. A major barrier to the development of new statistical methods is the lack of RNA sequencing datasets that can be easily obtained and analyzed in common statistical software packages such as R. To speed up the development process, we have created a resource of analysis-ready RNA-sequencing datasets.2 DescriptionReCount is an online resource of RNA-seq gene count tables and auxilliary data. Tables were built from raw RNA sequencing data from 18 different published studies comprising 475 samples and over 8 billion reads. Using the Myrna package, reads were aligned, overlapped with gene models and tabulated into gene-by-sample count tables that are ready for statistical analysis. Count tables and phenotype data were combined into Bioconductor ExpressionSet objects for ease of analysis. ReCount also contains the Myrna manifest files and R source code used to process the samples, allowing statistical and computational scientists to consider alternative parameter values.3 ConclusionsBy combining datasets from many studies and providing data that has already been processed from. fastq format into ready-to-use. RData and. txt files, ReCount facilitates analysis and methods development for RNA-seq count data. We anticipate that ReCount will also be useful for investigators who wish to consider cross-study comparisons and alternative normalization strategies for RNA-seq.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-12-449", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684108", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529382", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439793", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "new statistical method", 
      "common statistical software packages", 
      "statistical methods", 
      "RNA-seq count data", 
      "statistical software package", 
      "RNA sequencing data", 
      "count datasets", 
      "alternative parameter values", 
      "R source code", 
      "raw RNA sequencing data", 
      "count data", 
      "parameter values", 
      "count tables", 
      "computational scientists", 
      "sequencing data", 
      "ease of analysis", 
      "RNA sequencing datasets", 
      "software package", 
      "RNA-sequencing datasets", 
      "powerful new approach", 
      "gene models", 
      "RNA-seq", 
      "sequencing datasets", 
      "statistical analysis", 
      "phenotype data", 
      "new approach", 
      "differential expression", 
      "FASTQ format", 
      "genes", 
      "package", 
      "reads", 
      "expression", 
      "table", 
      "dataset", 
      "txt file", 
      "exons", 
      "model", 
      "normalization strategy", 
      "sequencing", 
      "source code", 
      "code", 
      "analysis", 
      "approach", 
      "data", 
      "cross-study comparisons", 
      "development", 
      "comparison", 
      "online resources", 
      "values", 
      "resources", 
      "method development", 
      "process", 
      "scientists", 
      "study", 
      "major barrier", 
      "samples", 
      "ease", 
      "utility", 
      "use", 
      "files", 
      "strategies", 
      "lack", 
      "format", 
      "barriers", 
      "manifest file", 
      "ConclusionsBy", 
      "development process", 
      "investigators", 
      "method", 
      "recount"
    ], 
    "name": "ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets", 
    "pagination": "449", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032929685"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-449"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22087737"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-449", 
      "https://app.dimensions.ai/details/publication/pub.1032929685"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-12-449"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-449'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-449'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-449'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-449'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      117 URIs      93 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-449 schema:about N1fe01a1e17454931a589812484c1e073
2 N3bfd48a5b4d2434bbb20cd66b1b61ad4
3 N664a3118e7fc48cca8e7fd9946fd4696
4 N71f536976da44bbfad346a0ca7dc1181
5 N9cc7433da8e84dc288e4de869005d1cf
6 Nc31a5f1e606b47299a0330c73d9335b2
7 anzsrc-for:01
8 anzsrc-for:0104
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author N79838aead43a40349146e67f1d449a15
12 schema:citation sg:pub.10.1038/nature07509
13 sg:pub.10.1038/nature08872
14 sg:pub.10.1038/nature08903
15 sg:pub.10.1038/nature09715
16 sg:pub.10.1038/nbt.1621
17 sg:pub.10.1038/nbt.1910
18 sg:pub.10.1038/ng1955
19 sg:pub.10.1038/nmeth.1226
20 sg:pub.10.1038/nmeth.1528
21 sg:pub.10.1038/nrg2484
22 sg:pub.10.1186/1471-2105-11-94
23 sg:pub.10.1186/gb-2004-5-10-r80
24 sg:pub.10.1186/gb-2010-11-5-207
25 sg:pub.10.1186/gb-2010-11-8-r83
26 schema:datePublished 2011-11-16
27 schema:datePublishedReg 2011-11-16
28 schema:description Abstract1 BackgroundRNA sequencing is a flexible and powerful new approach for measuring gene, exon, or isoform expression. To maximize the utility of RNA sequencing data, new statistical methods are needed for clustering, differential expression, and other analyses. A major barrier to the development of new statistical methods is the lack of RNA sequencing datasets that can be easily obtained and analyzed in common statistical software packages such as R. To speed up the development process, we have created a resource of analysis-ready RNA-sequencing datasets.2 DescriptionReCount is an online resource of RNA-seq gene count tables and auxilliary data. Tables were built from raw RNA sequencing data from 18 different published studies comprising 475 samples and over 8 billion reads. Using the Myrna package, reads were aligned, overlapped with gene models and tabulated into gene-by-sample count tables that are ready for statistical analysis. Count tables and phenotype data were combined into Bioconductor ExpressionSet objects for ease of analysis. ReCount also contains the Myrna manifest files and R source code used to process the samples, allowing statistical and computational scientists to consider alternative parameter values.3 ConclusionsBy combining datasets from many studies and providing data that has already been processed from. fastq format into ready-to-use. RData and. txt files, ReCount facilitates analysis and methods development for RNA-seq count data. We anticipate that ReCount will also be useful for investigators who wish to consider cross-study comparisons and alternative normalization strategies for RNA-seq.
29 schema:genre article
30 schema:isAccessibleForFree true
31 schema:isPartOf N64a4b080bb6d43069d1420e038acf063
32 N995791fe077b48eebcbd5f00f1730497
33 sg:journal.1023786
34 schema:keywords ConclusionsBy
35 FASTQ format
36 R source code
37 RNA sequencing data
38 RNA sequencing datasets
39 RNA-seq
40 RNA-seq count data
41 RNA-sequencing datasets
42 alternative parameter values
43 analysis
44 approach
45 barriers
46 code
47 common statistical software packages
48 comparison
49 computational scientists
50 count data
51 count datasets
52 count tables
53 cross-study comparisons
54 data
55 dataset
56 development
57 development process
58 differential expression
59 ease
60 ease of analysis
61 exons
62 expression
63 files
64 format
65 gene models
66 genes
67 investigators
68 lack
69 major barrier
70 manifest file
71 method
72 method development
73 model
74 new approach
75 new statistical method
76 normalization strategy
77 online resources
78 package
79 parameter values
80 phenotype data
81 powerful new approach
82 process
83 raw RNA sequencing data
84 reads
85 recount
86 resources
87 samples
88 scientists
89 sequencing
90 sequencing data
91 sequencing datasets
92 software package
93 source code
94 statistical analysis
95 statistical methods
96 statistical software package
97 strategies
98 study
99 table
100 txt file
101 use
102 utility
103 values
104 schema:name ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets
105 schema:pagination 449
106 schema:productId N443b94d41da242d1bb1a413db5375187
107 N46737af4543949e0a59b849374baa74a
108 Nccef2fb716114a3580a449759cf8e413
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032929685
110 https://doi.org/10.1186/1471-2105-12-449
111 schema:sdDatePublished 2022-09-02T15:54
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N64e6874aa5d34e179f48e1bfaf442cbb
114 schema:url https://doi.org/10.1186/1471-2105-12-449
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N1fe01a1e17454931a589812484c1e073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name RNA
120 rdf:type schema:DefinedTerm
121 N3bfd48a5b4d2434bbb20cd66b1b61ad4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Software
123 rdf:type schema:DefinedTerm
124 N443b94d41da242d1bb1a413db5375187 schema:name pubmed_id
125 schema:value 22087737
126 rdf:type schema:PropertyValue
127 N46737af4543949e0a59b849374baa74a schema:name dimensions_id
128 schema:value pub.1032929685
129 rdf:type schema:PropertyValue
130 N56930a099eec4dd5932faa5cbdd0707f rdf:first sg:person.01140612747.82
131 rdf:rest rdf:nil
132 N64a4b080bb6d43069d1420e038acf063 schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 N64e6874aa5d34e179f48e1bfaf442cbb schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N664a3118e7fc48cca8e7fd9946fd4696 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Animals
138 rdf:type schema:DefinedTerm
139 N71f536976da44bbfad346a0ca7dc1181 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 N79838aead43a40349146e67f1d449a15 rdf:first sg:person.01322773346.42
143 rdf:rest Ne0180bcbee3648b49cf274c2f98c48c5
144 N995791fe077b48eebcbd5f00f1730497 schema:volumeNumber 12
145 rdf:type schema:PublicationVolume
146 N9cc7433da8e84dc288e4de869005d1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Sequence Analysis, RNA
148 rdf:type schema:DefinedTerm
149 Nc31a5f1e606b47299a0330c73d9335b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Gene Expression Profiling
151 rdf:type schema:DefinedTerm
152 Nccef2fb716114a3580a449759cf8e413 schema:name doi
153 schema:value 10.1186/1471-2105-12-449
154 rdf:type schema:PropertyValue
155 Ne0180bcbee3648b49cf274c2f98c48c5 rdf:first sg:person.011763134307.48
156 rdf:rest N56930a099eec4dd5932faa5cbdd0707f
157 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
158 schema:name Mathematical Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
161 schema:name Statistics
162 rdf:type schema:DefinedTerm
163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
164 schema:name Biological Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
167 schema:name Genetics
168 rdf:type schema:DefinedTerm
169 sg:grant.2439793 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-449
170 rdf:type schema:MonetaryGrant
171 sg:grant.2529382 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-449
172 rdf:type schema:MonetaryGrant
173 sg:grant.2684108 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-449
174 rdf:type schema:MonetaryGrant
175 sg:journal.1023786 schema:issn 1471-2105
176 schema:name BMC Bioinformatics
177 schema:publisher Springer Nature
178 rdf:type schema:Periodical
179 sg:person.01140612747.82 schema:affiliation grid-institutes:grid.21107.35
180 schema:familyName Leek
181 schema:givenName Jeffrey T
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140612747.82
183 rdf:type schema:Person
184 sg:person.011763134307.48 schema:affiliation grid-institutes:grid.21107.35
185 schema:familyName Langmead
186 schema:givenName Ben
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763134307.48
188 rdf:type schema:Person
189 sg:person.01322773346.42 schema:affiliation grid-institutes:grid.21107.35
190 schema:familyName Frazee
191 schema:givenName Alyssa C
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322773346.42
193 rdf:type schema:Person
194 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
195 https://doi.org/10.1038/nature07509
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature08872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044630803
198 https://doi.org/10.1038/nature08872
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature08903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001350952
201 https://doi.org/10.1038/nature08903
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nature09715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031240109
204 https://doi.org/10.1038/nature09715
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
207 https://doi.org/10.1038/nbt.1621
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nbt.1910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030579983
210 https://doi.org/10.1038/nbt.1910
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/ng1955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051601706
213 https://doi.org/10.1038/ng1955
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
216 https://doi.org/10.1038/nmeth.1226
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nmeth.1528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047715940
219 https://doi.org/10.1038/nmeth.1528
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
222 https://doi.org/10.1038/nrg2484
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1471-2105-11-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053091615
225 https://doi.org/10.1186/1471-2105-11-94
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
228 https://doi.org/10.1186/gb-2004-5-10-r80
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/gb-2010-11-5-207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011746478
231 https://doi.org/10.1186/gb-2010-11-5-207
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/gb-2010-11-8-r83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039544540
234 https://doi.org/10.1186/gb-2010-11-8-r83
235 rdf:type schema:CreativeWork
236 grid-institutes:grid.21107.35 schema:alternateName Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA
237 schema:name Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, 21205, Baltimore, MD, USA
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...