Techniques for analysing pattern formation in populations of stem cells and their progeny View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-10-12

AUTHORS

John A Fozard, Glen R Kirkham, Lee DK Buttery, John R King, Oliver E Jensen, Helen M Byrne

ABSTRACT

BackgroundTo investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells and their progeny are cultured as a monolayer. We assume that the fate of an individual cell is regulated by the signals it receives from neighbouring cells via either diffusive or juxtacrine signalling. We analyse simulated patterns using two different spatial statistical measures that are suited to planar multicellular systems: pair correlation functions (PCFs) and quadrat histograms (QHs).ResultsWith a diffusive signalling mechanism, pattern size (revealed by PCFs) is determined by both morphogen decay rate and a sensitivity parameter that determines the degree to which morphogen biases differentiation; high sensitivity and slow decay give rise to large-scale patterns. In contrast, with juxtacrine signalling, high sensitivity produces well-defined patterns over shorter lengthscales. QHs are simpler to compute than PCFs and allow us to distinguish between random differentiation at low sensitivities and patterned states generated at higher sensitivities.ConclusionsPCFs and QHs together provide an effective means of characterising emergent patterns of differentiation in planar multicellular aggregates. More... »

PAGES

396

References to SciGraph publications

  • 2008-06-02. Mesodermal fate decisions of a stem cell: the Wnt switch in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2003-12. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila in NATURE
  • 2007-10-27. The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2000-03. Mathematical modelling of juxtacrine patterning in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2009-03-01. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells in NATURE BIOTECHNOLOGY
  • 2002. Random Heterogeneous Materials, Microstructure and Macroscopic Properties in NONE
  • 2007-09-25. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision in JOURNAL OF GASTROENTEROLOGY
  • 2003-10-27. Oscillations and patterns in spatially discrete models for developmental intercellular signalling in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2006-09. Notch signalling: a simple pathway becomes complex in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2008-07-21. Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning in BMC NEUROSCIENCE
  • 2009-02-01. Continuous single-cell imaging of blood generation from haemogenic endothelium in NATURE
  • 2009-10-23. Local cell metrics: a novel method for analysis of cell-cell interactions in BMC BIOINFORMATICS
  • 2005-05-10. Stochasticity in gene expression: from theories to phenotypes in NATURE REVIEWS GENETICS
  • 1992. Numerical Solution of Stochastic Differential Equations in NONE
  • 2003. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations in NONE
  • 2008-05. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells in NATURE
  • 2002-04. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors in NATURE BIOTECHNOLOGY
  • 2009-09-09. Systems biology of stem cell fate and cellular reprogramming in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2003. Mathematical Biology, II: Spatial Models and Biomedical Applications in NONE
  • 2004-07. Speed of pattern appearance in reaction-diffusion models: Implications in the pattern formation of limb bud mesenchyme cells in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2008-02-20. The role of oxygen availability in embryonic development and stem cell function in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2005-01-26. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: Effect of cofactors on differentiating lineages in BMC DEVELOPMENTAL BIOLOGY
  • 2009-12. Forcing cells to change lineages in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-12-396

    DOI

    http://dx.doi.org/10.1186/1471-2105-12-396

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043145406

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21991994


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Culture Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Lineage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
                "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fozard", 
            "givenName": "John A", 
            "id": "sg:person.01346357634.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346357634.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Advanced Drug Delivery & Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
                "Division of Advanced Drug Delivery & Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kirkham", 
            "givenName": "Glen R", 
            "id": "sg:person.01023700704.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023700704.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Advanced Drug Delivery & Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
                "Division of Advanced Drug Delivery & Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buttery", 
            "givenName": "Lee DK", 
            "id": "sg:person.011101227747.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101227747.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
                "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "King", 
            "givenName": "John R", 
            "id": "sg:person.01205662044.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205662044.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
                "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Oliver E", 
            "id": "sg:person.01023320244.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023320244.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
                "Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Byrne", 
            "givenName": "Helen M", 
            "id": "sg:person.0734733576.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734733576.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrm2766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022883622", 
              "https://doi.org/10.1038/nrm2766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030324601", 
              "https://doi.org/10.1038/nature02157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-6355-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007611186", 
              "https://doi.org/10.1007/978-1-4757-6355-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-007-9264-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042790212", 
              "https://doi.org/10.1007/s11538-007-9264-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.bulm.2003.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034389034", 
              "https://doi.org/10.1016/j.bulm.2003.09.009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12616-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001580100", 
              "https://doi.org/10.1007/978-3-662-12616-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1006/bulm.1999.0152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051635911", 
              "https://doi.org/10.1006/bulm.1999.0152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00535-007-2087-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017279904", 
              "https://doi.org/10.1007/s00535-007-2087-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052635396", 
              "https://doi.org/10.1038/nrm2354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-003-0247-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034854101", 
              "https://doi.org/10.1007/s00285-003-0247-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014958319", 
              "https://doi.org/10.1038/nrg1615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007549438", 
              "https://doi.org/10.1038/nature07760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b98869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012012562", 
              "https://doi.org/10.1007/b98869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031252068", 
              "https://doi.org/10.1038/nature06965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024611028", 
              "https://doi.org/10.1038/nature08533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-213x-5-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050396008", 
              "https://doi.org/10.1186/1471-213x-5-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052247224", 
              "https://doi.org/10.1038/nbt.1527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-008-8042-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000876267", 
              "https://doi.org/10.1007/s00018-008-8042-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-09017-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033434289", 
              "https://doi.org/10.1007/978-3-662-09017-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2202-9-68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044382142", 
              "https://doi.org/10.1186/1471-2202-9-68"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019849472", 
              "https://doi.org/10.1038/nrm2009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0402-370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045277233", 
              "https://doi.org/10.1038/nbt0402-370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012860090", 
              "https://doi.org/10.1186/1471-2105-10-350"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-10-12", 
        "datePublishedReg": "2011-10-12", 
        "description": "BackgroundTo investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells and their progeny are cultured as a monolayer. We assume that the fate of an individual cell is regulated by the signals it receives from neighbouring cells via either diffusive or juxtacrine signalling. We analyse simulated patterns using two different spatial statistical measures that are suited to planar multicellular systems: pair correlation functions (PCFs) and quadrat histograms (QHs).ResultsWith a diffusive signalling mechanism, pattern size (revealed by PCFs) is determined by both morphogen decay rate and a sensitivity parameter that determines the degree to which morphogen biases differentiation; high sensitivity and slow decay give rise to large-scale patterns. In contrast, with juxtacrine signalling, high sensitivity produces well-defined patterns over shorter lengthscales. QHs are simpler to compute than PCFs and allow us to distinguish between random differentiation at low sensitivities and patterned states generated at higher sensitivities.ConclusionsPCFs and QHs together provide an effective means of characterising emergent patterns of differentiation in planar multicellular aggregates.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2105-12-396", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2764704", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "stem cells", 
          "inter-cellular signaling pathways", 
          "individual-based model", 
          "random differentiation", 
          "stochastic individual-based model", 
          "pattern formation", 
          "juxtacrine signaling", 
          "signaling pathways", 
          "signaling mechanism", 
          "multicellular aggregates", 
          "cell differentiation", 
          "large-scale patterns", 
          "multicellular systems", 
          "individual cells", 
          "differentiation", 
          "progeny", 
          "cells", 
          "emergent patterns", 
          "juxtacrine", 
          "signaling", 
          "pathway", 
          "patterns", 
          "fate", 
          "formation", 
          "patterned states", 
          "mechanism", 
          "population", 
          "function", 
          "aggregates", 
          "contrast", 
          "high sensitivity", 
          "sensitivity", 
          "signals", 
          "intra", 
          "short lengthscales", 
          "size", 
          "monolayers", 
          "spatial statistical measures", 
          "effective means", 
          "decay rate", 
          "slow decay", 
          "rise", 
          "rate", 
          "low sensitivity", 
          "system", 
          "degree", 
          "decay", 
          "state", 
          "model", 
          "means", 
          "pattern size", 
          "statistical measures", 
          "pair correlation function", 
          "ResultsWith", 
          "technique", 
          "parameters", 
          "measures", 
          "lengthscale", 
          "sensitivity parameters", 
          "histogram", 
          "BackgroundTo", 
          "correlation functions"
        ], 
        "name": "Techniques for analysing pattern formation in populations of stem cells and their progeny", 
        "pagination": "396", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043145406"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-12-396"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21991994"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-12-396", 
          "https://app.dimensions.ai/details/publication/pub.1043145406"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_541.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2105-12-396"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-396'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-396'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-396'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-396'


     

    This table displays all metadata directly associated to this object as RDF triples.

    287 TRIPLES      22 PREDICATES      119 URIs      88 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-12-396 schema:about N1a693f1e23444c3cbbfefc2338df6bc7
    2 N76444eb59d6141f698270b874a6a7a07
    3 N9261087c155c4b26a661229c0d969345
    4 N9e993e5ca195437ab0e13dc8adf50f2b
    5 Na17d0ea9788b427388db308353f9fc0f
    6 Nd6eebd66a3a6432fb8a4268ec15c1daa
    7 Ne925d9d5543d4cc0bad04fe6389bb836
    8 Neb0cb58a92e34611a35f5e6cca164acf
    9 anzsrc-for:06
    10 anzsrc-for:0601
    11 schema:author Nc295f098162440ccae0b2161603b3493
    12 schema:citation sg:pub.10.1006/bulm.1999.0152
    13 sg:pub.10.1007/978-1-4757-6355-3
    14 sg:pub.10.1007/978-3-662-09017-6
    15 sg:pub.10.1007/978-3-662-12616-5
    16 sg:pub.10.1007/b98869
    17 sg:pub.10.1007/s00018-008-8042-1
    18 sg:pub.10.1007/s00285-003-0247-1
    19 sg:pub.10.1007/s00535-007-2087-z
    20 sg:pub.10.1007/s11538-007-9264-3
    21 sg:pub.10.1016/j.bulm.2003.09.009
    22 sg:pub.10.1038/nature02157
    23 sg:pub.10.1038/nature06965
    24 sg:pub.10.1038/nature07760
    25 sg:pub.10.1038/nature08533
    26 sg:pub.10.1038/nbt.1527
    27 sg:pub.10.1038/nbt0402-370
    28 sg:pub.10.1038/nrg1615
    29 sg:pub.10.1038/nrm2009
    30 sg:pub.10.1038/nrm2354
    31 sg:pub.10.1038/nrm2766
    32 sg:pub.10.1186/1471-2105-10-350
    33 sg:pub.10.1186/1471-213x-5-1
    34 sg:pub.10.1186/1471-2202-9-68
    35 schema:datePublished 2011-10-12
    36 schema:datePublishedReg 2011-10-12
    37 schema:description BackgroundTo investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells and their progeny are cultured as a monolayer. We assume that the fate of an individual cell is regulated by the signals it receives from neighbouring cells via either diffusive or juxtacrine signalling. We analyse simulated patterns using two different spatial statistical measures that are suited to planar multicellular systems: pair correlation functions (PCFs) and quadrat histograms (QHs).ResultsWith a diffusive signalling mechanism, pattern size (revealed by PCFs) is determined by both morphogen decay rate and a sensitivity parameter that determines the degree to which morphogen biases differentiation; high sensitivity and slow decay give rise to large-scale patterns. In contrast, with juxtacrine signalling, high sensitivity produces well-defined patterns over shorter lengthscales. QHs are simpler to compute than PCFs and allow us to distinguish between random differentiation at low sensitivities and patterned states generated at higher sensitivities.ConclusionsPCFs and QHs together provide an effective means of characterising emergent patterns of differentiation in planar multicellular aggregates.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N8d5bf40cde274759a3499f8e374e2d33
    42 Nbe85e2272a334eff8148db76b8df2db3
    43 sg:journal.1023786
    44 schema:keywords BackgroundTo
    45 ResultsWith
    46 aggregates
    47 cell differentiation
    48 cells
    49 contrast
    50 correlation functions
    51 decay
    52 decay rate
    53 degree
    54 differentiation
    55 effective means
    56 emergent patterns
    57 fate
    58 formation
    59 function
    60 high sensitivity
    61 histogram
    62 individual cells
    63 individual-based model
    64 inter-cellular signaling pathways
    65 intra
    66 juxtacrine
    67 juxtacrine signaling
    68 large-scale patterns
    69 lengthscale
    70 low sensitivity
    71 means
    72 measures
    73 mechanism
    74 model
    75 monolayers
    76 multicellular aggregates
    77 multicellular systems
    78 pair correlation function
    79 parameters
    80 pathway
    81 pattern formation
    82 pattern size
    83 patterned states
    84 patterns
    85 population
    86 progeny
    87 random differentiation
    88 rate
    89 rise
    90 sensitivity
    91 sensitivity parameters
    92 short lengthscales
    93 signaling
    94 signaling mechanism
    95 signaling pathways
    96 signals
    97 size
    98 slow decay
    99 spatial statistical measures
    100 state
    101 statistical measures
    102 stem cells
    103 stochastic individual-based model
    104 system
    105 technique
    106 schema:name Techniques for analysing pattern formation in populations of stem cells and their progeny
    107 schema:pagination 396
    108 schema:productId N015a3f0c2f4f4b109d3400043877a622
    109 N090e4423ce304183b638b293369b6bf5
    110 Nbadb953399c149228ddac653720daf19
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043145406
    112 https://doi.org/10.1186/1471-2105-12-396
    113 schema:sdDatePublished 2022-06-01T22:10
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher N0a7ca011c91348af86d7e7f2e8a56b7a
    116 schema:url https://doi.org/10.1186/1471-2105-12-396
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N015a3f0c2f4f4b109d3400043877a622 schema:name dimensions_id
    121 schema:value pub.1043145406
    122 rdf:type schema:PropertyValue
    123 N090e4423ce304183b638b293369b6bf5 schema:name doi
    124 schema:value 10.1186/1471-2105-12-396
    125 rdf:type schema:PropertyValue
    126 N0a7ca011c91348af86d7e7f2e8a56b7a schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 N1290c2514547489dadc40eb247178f19 rdf:first sg:person.01023320244.49
    129 rdf:rest Nddcbac2bae32475192cfb1601f5c6206
    130 N1a693f1e23444c3cbbfefc2338df6bc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Mice
    132 rdf:type schema:DefinedTerm
    133 N76444eb59d6141f698270b874a6a7a07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Cell Differentiation
    135 rdf:type schema:DefinedTerm
    136 N8d5bf40cde274759a3499f8e374e2d33 schema:issueNumber 1
    137 rdf:type schema:PublicationIssue
    138 N9261087c155c4b26a661229c0d969345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Animals
    140 rdf:type schema:DefinedTerm
    141 N9e993e5ca195437ab0e13dc8adf50f2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Cell Culture Techniques
    143 rdf:type schema:DefinedTerm
    144 Na17d0ea9788b427388db308353f9fc0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Signal Transduction
    146 rdf:type schema:DefinedTerm
    147 Nbadb953399c149228ddac653720daf19 schema:name pubmed_id
    148 schema:value 21991994
    149 rdf:type schema:PropertyValue
    150 Nbe85e2272a334eff8148db76b8df2db3 schema:volumeNumber 12
    151 rdf:type schema:PublicationVolume
    152 Nc295f098162440ccae0b2161603b3493 rdf:first sg:person.01346357634.91
    153 rdf:rest Nc3f1b35bd3ef4d00bae65392ff1784a7
    154 Nc3f1b35bd3ef4d00bae65392ff1784a7 rdf:first sg:person.01023700704.07
    155 rdf:rest Nc728e91ca67d4e2bad0074c02462b8a2
    156 Nc400fe5fd6be4c539e50c2678869c396 rdf:first sg:person.01205662044.55
    157 rdf:rest N1290c2514547489dadc40eb247178f19
    158 Nc728e91ca67d4e2bad0074c02462b8a2 rdf:first sg:person.011101227747.44
    159 rdf:rest Nc400fe5fd6be4c539e50c2678869c396
    160 Nd6eebd66a3a6432fb8a4268ec15c1daa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Cell Lineage
    162 rdf:type schema:DefinedTerm
    163 Nddcbac2bae32475192cfb1601f5c6206 rdf:first sg:person.0734733576.19
    164 rdf:rest rdf:nil
    165 Ne925d9d5543d4cc0bad04fe6389bb836 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Stem Cells
    167 rdf:type schema:DefinedTerm
    168 Neb0cb58a92e34611a35f5e6cca164acf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Models, Biological
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Biological Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Biochemistry and Cell Biology
    176 rdf:type schema:DefinedTerm
    177 sg:grant.2764704 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-396
    178 rdf:type schema:MonetaryGrant
    179 sg:journal.1023786 schema:issn 1471-2105
    180 schema:name BMC Bioinformatics
    181 schema:publisher Springer Nature
    182 rdf:type schema:Periodical
    183 sg:person.01023320244.49 schema:affiliation grid-institutes:grid.4563.4
    184 schema:familyName Jensen
    185 schema:givenName Oliver E
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023320244.49
    187 rdf:type schema:Person
    188 sg:person.01023700704.07 schema:affiliation grid-institutes:grid.4563.4
    189 schema:familyName Kirkham
    190 schema:givenName Glen R
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023700704.07
    192 rdf:type schema:Person
    193 sg:person.011101227747.44 schema:affiliation grid-institutes:grid.4563.4
    194 schema:familyName Buttery
    195 schema:givenName Lee DK
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101227747.44
    197 rdf:type schema:Person
    198 sg:person.01205662044.55 schema:affiliation grid-institutes:grid.4563.4
    199 schema:familyName King
    200 schema:givenName John R
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205662044.55
    202 rdf:type schema:Person
    203 sg:person.01346357634.91 schema:affiliation grid-institutes:grid.4563.4
    204 schema:familyName Fozard
    205 schema:givenName John A
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346357634.91
    207 rdf:type schema:Person
    208 sg:person.0734733576.19 schema:affiliation grid-institutes:grid.4563.4
    209 schema:familyName Byrne
    210 schema:givenName Helen M
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734733576.19
    212 rdf:type schema:Person
    213 sg:pub.10.1006/bulm.1999.0152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051635911
    214 https://doi.org/10.1006/bulm.1999.0152
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/978-1-4757-6355-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007611186
    217 https://doi.org/10.1007/978-1-4757-6355-3
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/978-3-662-09017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033434289
    220 https://doi.org/10.1007/978-3-662-09017-6
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/978-3-662-12616-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001580100
    223 https://doi.org/10.1007/978-3-662-12616-5
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/b98869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012012562
    226 https://doi.org/10.1007/b98869
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00018-008-8042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000876267
    229 https://doi.org/10.1007/s00018-008-8042-1
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00285-003-0247-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034854101
    232 https://doi.org/10.1007/s00285-003-0247-1
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s00535-007-2087-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017279904
    235 https://doi.org/10.1007/s00535-007-2087-z
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s11538-007-9264-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042790212
    238 https://doi.org/10.1007/s11538-007-9264-3
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1016/j.bulm.2003.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034389034
    241 https://doi.org/10.1016/j.bulm.2003.09.009
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nature02157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030324601
    244 https://doi.org/10.1038/nature02157
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nature06965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031252068
    247 https://doi.org/10.1038/nature06965
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nature07760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007549438
    250 https://doi.org/10.1038/nature07760
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nature08533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024611028
    253 https://doi.org/10.1038/nature08533
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nbt.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052247224
    256 https://doi.org/10.1038/nbt.1527
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nbt0402-370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045277233
    259 https://doi.org/10.1038/nbt0402-370
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nrg1615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014958319
    262 https://doi.org/10.1038/nrg1615
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nrm2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019849472
    265 https://doi.org/10.1038/nrm2009
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nrm2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052635396
    268 https://doi.org/10.1038/nrm2354
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nrm2766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022883622
    271 https://doi.org/10.1038/nrm2766
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/1471-2105-10-350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012860090
    274 https://doi.org/10.1186/1471-2105-10-350
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/1471-213x-5-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050396008
    277 https://doi.org/10.1186/1471-213x-5-1
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/1471-2202-9-68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044382142
    280 https://doi.org/10.1186/1471-2202-9-68
    281 rdf:type schema:CreativeWork
    282 grid-institutes:grid.4563.4 schema:alternateName Division of Advanced Drug Delivery & Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
    283 Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
    284 schema:name Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
    285 Division of Advanced Drug Delivery & Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
    286 Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
    287 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...