Removing Noise From Pyrosequenced Amplicons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Christopher Quince, Anders Lanzen, Russell J Davenport, Peter J Turnbaugh

ABSTRACT

BACKGROUND: In many environmental genomics applications a homologous region of DNA from a diverse sample is first amplified by PCR and then sequenced. The next generation sequencing technology, 454 pyrosequencing, has allowed much larger read numbers from PCR amplicons than ever before. This has revolutionised the study of microbial diversity as it is now possible to sequence a substantial fraction of the 16S rRNA genes in a community. However, there is a growing realisation that because of the large read numbers and the lack of consensus sequences it is vital to distinguish noise from true sequence diversity in this data. Otherwise this leads to inflated estimates of the number of types or operational taxonomic units (OTUs) present. Three sources of error are important: sequencing error, PCR single base substitutions and PCR chimeras. We present AmpliconNoise, a development of the PyroNoise algorithm that is capable of separately removing 454 sequencing errors and PCR single base errors. We also introduce a novel chimera removal program, Perseus, that exploits the sequence abundances associated with pyrosequencing data. We use data sets where samples of known diversity have been amplified and sequenced to quantify the effect of each of the sources of error on OTU inflation and to validate these algorithms. RESULTS: AmpliconNoise outperforms alternative algorithms substantially reducing per base error rates for both the GS FLX and latest Titanium protocol. All three sources of error lead to inflation of diversity estimates. In particular, chimera formation has a hitherto unrealised importance which varies according to amplification protocol. We show that AmpliconNoise allows accurate estimates of OTU number. Just as importantly AmpliconNoise generates the right OTUs even at low sequence differences. We demonstrate that Perseus has very high sensitivity, able to find 99% of chimeras, which is critical when these are present at high frequencies. CONCLUSIONS: AmpliconNoise followed by Perseus is a very effective pipeline for the removal of noise. In addition the principles behind the algorithms, the inference of true sequences using Expectation-Maximization (EM), and the treatment of chimera detection as a classification or 'supervised learning' problem, will be equally applicable to new sequencing technologies as they appear. More... »

PAGES

38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-38

DOI

http://dx.doi.org/10.1186/1471-2105-12-38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014960196

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21276213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Glasgow", 
          "id": "https://www.grid.ac/institutes/grid.8756.c", 
          "name": [
            "Department of Civil Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, G12 8LT, Glasgow, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quince", 
        "givenName": "Christopher", 
        "id": "sg:person.01124434037.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124434037.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bergen", 
          "id": "https://www.grid.ac/institutes/grid.7914.b", 
          "name": [
            "Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lanzen", 
        "givenName": "Anders", 
        "id": "sg:person.01101707555.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101707555.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, NE1 7RU, Newcastle upon Tyne, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davenport", 
        "givenName": "Russell J", 
        "id": "sg:person.01243053350.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243053350.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "FAS Center for Systems Biology, Harvard University, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turnbaugh", 
        "givenName": "Peter J", 
        "id": "sg:person.01065252767.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252767.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.1.1.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001511466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1002355107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004228954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.112730.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007579011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605127103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008547462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2009.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010222284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0409-244a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010837351", 
          "https://doi.org/10.1038/nmeth0409-244a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012309503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013017359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1146689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017150973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0910-668b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017522391", 
          "https://doi.org/10.1038/nmeth0910-668b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0910-668b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017522391", 
          "https://doi.org/10.1038/nmeth0910-668b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1000080107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019627885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026641916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027606868", 
          "https://doi.org/10.1186/1471-2105-11-152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.096651.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034877175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036641443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036641443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037510125", 
          "https://doi.org/10.1186/gb-2007-8-7-r143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730610", 
          "https://doi.org/10.1038/nmeth.1361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730610", 
          "https://doi.org/10.1038/nmeth.1361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042971826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02193.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044325968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02193.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044325968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.02271-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048206289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.12.7724-7736.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050283104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/41.8.578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059479201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000113219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077975130"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: In many environmental genomics applications a homologous region of DNA from a diverse sample is first amplified by PCR and then sequenced. The next generation sequencing technology, 454 pyrosequencing, has allowed much larger read numbers from PCR amplicons than ever before. This has revolutionised the study of microbial diversity as it is now possible to sequence a substantial fraction of the 16S rRNA genes in a community. However, there is a growing realisation that because of the large read numbers and the lack of consensus sequences it is vital to distinguish noise from true sequence diversity in this data. Otherwise this leads to inflated estimates of the number of types or operational taxonomic units (OTUs) present. Three sources of error are important: sequencing error, PCR single base substitutions and PCR chimeras. We present AmpliconNoise, a development of the PyroNoise algorithm that is capable of separately removing 454 sequencing errors and PCR single base errors. We also introduce a novel chimera removal program, Perseus, that exploits the sequence abundances associated with pyrosequencing data. We use data sets where samples of known diversity have been amplified and sequenced to quantify the effect of each of the sources of error on OTU inflation and to validate these algorithms.\nRESULTS: AmpliconNoise outperforms alternative algorithms substantially reducing per base error rates for both the GS FLX and latest Titanium protocol. All three sources of error lead to inflation of diversity estimates. In particular, chimera formation has a hitherto unrealised importance which varies according to amplification protocol. We show that AmpliconNoise allows accurate estimates of OTU number. Just as importantly AmpliconNoise generates the right OTUs even at low sequence differences. We demonstrate that Perseus has very high sensitivity, able to find 99% of chimeras, which is critical when these are present at high frequencies.\nCONCLUSIONS: AmpliconNoise followed by Perseus is a very effective pipeline for the removal of noise. In addition the principles behind the algorithms, the inference of true sequences using Expectation-Maximization (EM), and the treatment of chimera detection as a classification or 'supervised learning' problem, will be equally applicable to new sequencing technologies as they appear.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-12-38", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2772762", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Removing Noise From Pyrosequenced Amplicons", 
    "pagination": "38", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47468d1789d4f69b6e932ad3daf0df5583e85d1bbcc49b89bcfec64f88026c1d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21276213"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-38"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014960196"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-38", 
      "https://app.dimensions.ai/details/publication/pub.1014960196"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-12-38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-38'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      62 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-38 schema:about N354e0cffc9cb40de8a5c603db9c752ff
2 Nc634dee7172e4a21a93f95358d8b2e6c
3 Nc666c042f8494439b084a4a20ea2febc
4 Nc7e7bbb60686478980cc38866a73dee6
5 Ne0fdd88d3cc14f1fb49461f06198d584
6 Ne7d1696bc27344bebb98bf3aecafe3c2
7 Nf281304c61904a70970e35f029c78b4b
8 Nf522c2b9de7b48b080142047257f8aee
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author N1dcd08c120bf4052b2649a589dba2ff7
12 schema:citation sg:pub.10.1038/nature03959
13 sg:pub.10.1038/nmeth.1361
14 sg:pub.10.1038/nmeth.f.303
15 sg:pub.10.1038/nmeth0409-244a
16 sg:pub.10.1038/nmeth0910-668b
17 sg:pub.10.1186/1471-2105-11-152
18 sg:pub.10.1186/gb-2007-8-7-r143
19 https://doi.org/10.1016/j.mimet.2009.09.012
20 https://doi.org/10.1073/pnas.0605127103
21 https://doi.org/10.1073/pnas.1000080107
22 https://doi.org/10.1073/pnas.1002355107
23 https://doi.org/10.1093/bioinformatics/bth226
24 https://doi.org/10.1093/bioinformatics/btq365
25 https://doi.org/10.1093/comjnl/41.8.578
26 https://doi.org/10.1093/nar/gki198
27 https://doi.org/10.1093/nar/gkp285
28 https://doi.org/10.1101/gr.096651.109
29 https://doi.org/10.1101/gr.1.1.17
30 https://doi.org/10.1101/gr.112730.110
31 https://doi.org/10.1111/j.1462-2920.2009.02051.x
32 https://doi.org/10.1111/j.1462-2920.2010.02193.x
33 https://doi.org/10.1126/science.1146689
34 https://doi.org/10.1128/aem.71.12.7724-7736.2005
35 https://doi.org/10.1128/jvi.02271-09
36 https://doi.org/10.2144/000113219
37 schema:datePublished 2011-12
38 schema:datePublishedReg 2011-12-01
39 schema:description BACKGROUND: In many environmental genomics applications a homologous region of DNA from a diverse sample is first amplified by PCR and then sequenced. The next generation sequencing technology, 454 pyrosequencing, has allowed much larger read numbers from PCR amplicons than ever before. This has revolutionised the study of microbial diversity as it is now possible to sequence a substantial fraction of the 16S rRNA genes in a community. However, there is a growing realisation that because of the large read numbers and the lack of consensus sequences it is vital to distinguish noise from true sequence diversity in this data. Otherwise this leads to inflated estimates of the number of types or operational taxonomic units (OTUs) present. Three sources of error are important: sequencing error, PCR single base substitutions and PCR chimeras. We present AmpliconNoise, a development of the PyroNoise algorithm that is capable of separately removing 454 sequencing errors and PCR single base errors. We also introduce a novel chimera removal program, Perseus, that exploits the sequence abundances associated with pyrosequencing data. We use data sets where samples of known diversity have been amplified and sequenced to quantify the effect of each of the sources of error on OTU inflation and to validate these algorithms. RESULTS: AmpliconNoise outperforms alternative algorithms substantially reducing per base error rates for both the GS FLX and latest Titanium protocol. All three sources of error lead to inflation of diversity estimates. In particular, chimera formation has a hitherto unrealised importance which varies according to amplification protocol. We show that AmpliconNoise allows accurate estimates of OTU number. Just as importantly AmpliconNoise generates the right OTUs even at low sequence differences. We demonstrate that Perseus has very high sensitivity, able to find 99% of chimeras, which is critical when these are present at high frequencies. CONCLUSIONS: AmpliconNoise followed by Perseus is a very effective pipeline for the removal of noise. In addition the principles behind the algorithms, the inference of true sequences using Expectation-Maximization (EM), and the treatment of chimera detection as a classification or 'supervised learning' problem, will be equally applicable to new sequencing technologies as they appear.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N79f8c8038f4540c8b417beb08a513d80
44 Na7f7b4579c1d4808a1b9827554da20ef
45 sg:journal.1023786
46 schema:name Removing Noise From Pyrosequenced Amplicons
47 schema:pagination 38
48 schema:productId N4823f024dedf488882781f78d6bf94e3
49 N7a4da4dfe63f4459af6f2e41009dd588
50 Ncab6a1551a9a44a4a1b38d46dfafc0c1
51 Ndecf008e596b4da9a7c74501ba890a15
52 Ne6c51834ac2f4e13bee9fa13df2114ce
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014960196
54 https://doi.org/10.1186/1471-2105-12-38
55 schema:sdDatePublished 2019-04-11T10:01
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N00925c8eac2c4d0eb98e6cdae87d91f9
58 schema:url https://link.springer.com/10.1186%2F1471-2105-12-38
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N00925c8eac2c4d0eb98e6cdae87d91f9 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N1dcd08c120bf4052b2649a589dba2ff7 rdf:first sg:person.01124434037.65
65 rdf:rest N5dfa274a4b8646a38bc284da21588202
66 N354e0cffc9cb40de8a5c603db9c752ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Logistic Models
68 rdf:type schema:DefinedTerm
69 N4823f024dedf488882781f78d6bf94e3 schema:name pubmed_id
70 schema:value 21276213
71 rdf:type schema:PropertyValue
72 N5dfa274a4b8646a38bc284da21588202 rdf:first sg:person.01101707555.42
73 rdf:rest N942d8a2140654a36bf4968ab902d3c39
74 N79f8c8038f4540c8b417beb08a513d80 schema:volumeNumber 12
75 rdf:type schema:PublicationVolume
76 N7a4da4dfe63f4459af6f2e41009dd588 schema:name nlm_unique_id
77 schema:value 100965194
78 rdf:type schema:PropertyValue
79 N942d8a2140654a36bf4968ab902d3c39 rdf:first sg:person.01243053350.35
80 rdf:rest Nfc00f79fefa84525be5dd99d528bdfe3
81 Na7f7b4579c1d4808a1b9827554da20ef schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 Nc634dee7172e4a21a93f95358d8b2e6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Polymerase Chain Reaction
85 rdf:type schema:DefinedTerm
86 Nc666c042f8494439b084a4a20ea2febc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sequence Analysis, DNA
88 rdf:type schema:DefinedTerm
89 Nc7e7bbb60686478980cc38866a73dee6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Software
91 rdf:type schema:DefinedTerm
92 Ncab6a1551a9a44a4a1b38d46dfafc0c1 schema:name dimensions_id
93 schema:value pub.1014960196
94 rdf:type schema:PropertyValue
95 Ndecf008e596b4da9a7c74501ba890a15 schema:name readcube_id
96 schema:value 47468d1789d4f69b6e932ad3daf0df5583e85d1bbcc49b89bcfec64f88026c1d
97 rdf:type schema:PropertyValue
98 Ne0fdd88d3cc14f1fb49461f06198d584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name DNA
100 rdf:type schema:DefinedTerm
101 Ne6c51834ac2f4e13bee9fa13df2114ce schema:name doi
102 schema:value 10.1186/1471-2105-12-38
103 rdf:type schema:PropertyValue
104 Ne7d1696bc27344bebb98bf3aecafe3c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name RNA, Ribosomal, 16S
106 rdf:type schema:DefinedTerm
107 Nf281304c61904a70970e35f029c78b4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Computational Biology
109 rdf:type schema:DefinedTerm
110 Nf522c2b9de7b48b080142047257f8aee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Algorithms
112 rdf:type schema:DefinedTerm
113 Nfc00f79fefa84525be5dd99d528bdfe3 rdf:first sg:person.01065252767.89
114 rdf:rest rdf:nil
115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
116 schema:name Biological Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
119 schema:name Genetics
120 rdf:type schema:DefinedTerm
121 sg:grant.2440522 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-38
122 rdf:type schema:MonetaryGrant
123 sg:grant.2772762 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-38
124 rdf:type schema:MonetaryGrant
125 sg:journal.1023786 schema:issn 1471-2105
126 schema:name BMC Bioinformatics
127 rdf:type schema:Periodical
128 sg:person.01065252767.89 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
129 schema:familyName Turnbaugh
130 schema:givenName Peter J
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252767.89
132 rdf:type schema:Person
133 sg:person.01101707555.42 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
134 schema:familyName Lanzen
135 schema:givenName Anders
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101707555.42
137 rdf:type schema:Person
138 sg:person.01124434037.65 schema:affiliation https://www.grid.ac/institutes/grid.8756.c
139 schema:familyName Quince
140 schema:givenName Christopher
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124434037.65
142 rdf:type schema:Person
143 sg:person.01243053350.35 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
144 schema:familyName Davenport
145 schema:givenName Russell J
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243053350.35
147 rdf:type schema:Person
148 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
149 https://doi.org/10.1038/nature03959
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmeth.1361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039730610
152 https://doi.org/10.1038/nmeth.1361
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
155 https://doi.org/10.1038/nmeth.f.303
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nmeth0409-244a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010837351
158 https://doi.org/10.1038/nmeth0409-244a
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmeth0910-668b schema:sameAs https://app.dimensions.ai/details/publication/pub.1017522391
161 https://doi.org/10.1038/nmeth0910-668b
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1471-2105-11-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027606868
164 https://doi.org/10.1186/1471-2105-11-152
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
167 https://doi.org/10.1186/gb-2007-8-7-r143
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.mimet.2009.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010222284
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.0605127103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008547462
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.1000080107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019627885
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1073/pnas.1002355107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004228954
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/bth226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012309503
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/btq365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042971826
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/comjnl/41.8.578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059479201
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/nar/gki198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013017359
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkp285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026641916
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1101/gr.096651.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034877175
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1101/gr.1.1.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001511466
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1101/gr.112730.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007579011
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.1462-2920.2009.02051.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036641443
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1462-2920.2010.02193.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044325968
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1146689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017150973
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1128/aem.71.12.7724-7736.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283104
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1128/jvi.02271-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048206289
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2144/000113219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077975130
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.1006.7 schema:alternateName Newcastle University
206 schema:name School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, NE1 7RU, Newcastle upon Tyne, UK
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
209 schema:name FAS Center for Systems Biology, Harvard University, 02138, Cambridge, MA, USA
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.7914.b schema:alternateName University of Bergen
212 schema:name Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.8756.c schema:alternateName University of Glasgow
215 schema:name Department of Civil Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, G12 8LT, Glasgow, UK
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...