Prototype semantic infrastructure for automated small molecule classification and annotation in lipidomics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Leonid L Chepelev, Alexandre Riazanov, Alexandre Kouznetsov, Hong Sang Low, Michel Dumontier, Christopher JO Baker

ABSTRACT

BACKGROUND: The development of high-throughput experimentation has led to astronomical growth in biologically relevant lipids and lipid derivatives identified, screened, and deposited in numerous online databases. Unfortunately, efforts to annotate, classify, and analyze these chemical entities have largely remained in the hands of human curators using manual or semi-automated protocols, leaving many novel entities unclassified. Since chemical function is often closely linked to structure, accurate structure-based classification and annotation of chemical entities is imperative to understanding their functionality. RESULTS: As part of an exploratory study, we have investigated the utility of semantic web technologies in automated chemical classification and annotation of lipids. Our prototype framework consists of two components: an ontology and a set of federated web services that operate upon it. The formal lipid ontology we use here extends a part of the LiPrO ontology and draws on the lipid hierarchy in the LIPID MAPS database, as well as literature-derived knowledge. The federated semantic web services that operate upon this ontology are deployed within the Semantic Annotation, Discovery, and Integration (SADI) framework. Structure-based lipid classification is enacted by two core services. Firstly, a structural annotation service detects and enumerates relevant functional groups for a specified chemical structure. A second service reasons over lipid ontology class descriptions using the attributes obtained from the annotation service and identifies the appropriate lipid classification. We extend the utility of these core services by combining them with additional SADI services that retrieve associations between lipids and proteins and identify publications related to specified lipid types. We analyze the performance of SADI-enabled eicosanoid classification relative to the LIPID MAPS classification and reflect on the contribution of our integrative methodology in the context of high-throughput lipidomics. CONCLUSIONS: Our prototype framework is capable of accurate automated classification of lipids and facile integration of lipid class information with additional data obtained with SADI web services. The potential of programming-free integration of external web services through the SADI framework offers an opportunity for development of powerful novel applications in lipidomics. We conclude that semantic web technologies can provide an accurate and versatile means of classification and annotation of lipids. More... »

PAGES

303

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-303

DOI

http://dx.doi.org/10.1186/1471-2105-12-303

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029431299

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21791100


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipid Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semantics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chepelev", 
        "givenName": "Leonid L", 
        "id": "sg:person.0642060675.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642060675.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of New Brunswick", 
          "id": "https://www.grid.ac/institutes/grid.266820.8", 
          "name": [
            "Department of Computer Science and Applied Statistics, University of New Brunswick, 100 Tucker Park Road, Saint John, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riazanov", 
        "givenName": "Alexandre", 
        "id": "sg:person.0671323060.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671323060.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of New Brunswick", 
          "id": "https://www.grid.ac/institutes/grid.266820.8", 
          "name": [
            "Department of Computer Science and Applied Statistics, University of New Brunswick, 100 Tucker Park Road, Saint John, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kouznetsov", 
        "givenName": "Alexandre", 
        "id": "sg:person.01117002773.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117002773.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "School of Computing, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, Southeast Asia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Low", 
        "givenName": "Hong Sang", 
        "id": "sg:person.01221743726.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221743726.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Canada", 
            "Institute of Biochemistry, Carleton University, Colonel By Drive, 1125, Ottawa, Canada", 
            "School of Computer Science, Carleton University, Colonel By Drive, 1125, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumontier", 
        "givenName": "Michel", 
        "id": "sg:person.01324655201.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of New Brunswick", 
          "id": "https://www.grid.ac/institutes/grid.266820.8", 
          "name": [
            "Department of Computer Science and Applied Statistics, University of New Brunswick, 100 Tucker Park Road, Saint John, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baker", 
        "givenName": "Christopher JO", 
        "id": "sg:person.0577526545.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577526545.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-12-s4-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009093255", 
          "https://doi.org/10.1186/1471-2105-12-s4-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10871-6_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009419361", 
          "https://doi.org/10.1007/978-3-642-10871-6_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10871-6_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009419361", 
          "https://doi.org/10.1007/978-3-642-10871-6_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2010.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011090370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npre.2010.5382.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014305010", 
          "https://doi.org/10.1038/npre.2010.5382.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/3.4.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019711375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-s1-s5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027931701", 
          "https://doi.org/10.1186/1471-2105-9-s1-s5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027979443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027979443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030920077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032664612", 
          "https://doi.org/10.1186/1471-2105-11-255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci025584y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033183422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci025584y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033183422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036491584", 
          "https://doi.org/10.1038/nrd1776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036491584", 
          "https://doi.org/10.1038/nrd1776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040184226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043256930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045301876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045387827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77587-4_325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046456260", 
          "https://doi.org/10.1007/978-3-540-77587-4_325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77587-4_325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046456260", 
          "https://doi.org/10.1007/978-3-540-77587-4_325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-s4-s24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049847528", 
          "https://doi.org/10.1186/1471-2164-11-s4-s24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci00057a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055400944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mic.2007.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061403699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076890686", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077963499", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/apscc.2009.5394148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094257508"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: The development of high-throughput experimentation has led to astronomical growth in biologically relevant lipids and lipid derivatives identified, screened, and deposited in numerous online databases. Unfortunately, efforts to annotate, classify, and analyze these chemical entities have largely remained in the hands of human curators using manual or semi-automated protocols, leaving many novel entities unclassified. Since chemical function is often closely linked to structure, accurate structure-based classification and annotation of chemical entities is imperative to understanding their functionality.\nRESULTS: As part of an exploratory study, we have investigated the utility of semantic web technologies in automated chemical classification and annotation of lipids. Our prototype framework consists of two components: an ontology and a set of federated web services that operate upon it. The formal lipid ontology we use here extends a part of the LiPrO ontology and draws on the lipid hierarchy in the LIPID MAPS database, as well as literature-derived knowledge. The federated semantic web services that operate upon this ontology are deployed within the Semantic Annotation, Discovery, and Integration (SADI) framework. Structure-based lipid classification is enacted by two core services. Firstly, a structural annotation service detects and enumerates relevant functional groups for a specified chemical structure. A second service reasons over lipid ontology class descriptions using the attributes obtained from the annotation service and identifies the appropriate lipid classification. We extend the utility of these core services by combining them with additional SADI services that retrieve associations between lipids and proteins and identify publications related to specified lipid types. We analyze the performance of SADI-enabled eicosanoid classification relative to the LIPID MAPS classification and reflect on the contribution of our integrative methodology in the context of high-throughput lipidomics.\nCONCLUSIONS: Our prototype framework is capable of accurate automated classification of lipids and facile integration of lipid class information with additional data obtained with SADI web services. The potential of programming-free integration of external web services through the SADI framework offers an opportunity for development of powerful novel applications in lipidomics. We conclude that semantic web technologies can provide an accurate and versatile means of classification and annotation of lipids.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-12-303", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Prototype semantic infrastructure for automated small molecule classification and annotation in lipidomics", 
    "pagination": "303", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c3488f3beff8b79028fe138d2276783adb2de0ba2a5dfff8e0076aa3a8a2a2c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21791100"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-303"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029431299"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-303", 
      "https://app.dimensions.ai/details/publication/pub.1029431299"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-12-303"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-303'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-303'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-303'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-303'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      58 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-303 schema:about N465b13e0c1364147b3cb04a593c3cf24
2 N655c4f3215d84818b8cb226914936e9e
3 N659dcb5e576c42318f8a88165f165742
4 N70b74c8a945e4ff3b8480886f5ebc898
5 N9aeb90647f354b47b1d84d48ca6fe22a
6 Nfb80689708d84edcb3bcd9c5de6cb49f
7 anzsrc-for:08
8 anzsrc-for:0806
9 schema:author Nf757c604083e474f8eb4642710b881d7
10 schema:citation sg:pub.10.1007/978-3-540-77587-4_325
11 sg:pub.10.1007/978-3-642-10871-6_27
12 sg:pub.10.1038/75556
13 sg:pub.10.1038/npre.2010.5382.1
14 sg:pub.10.1038/nrd1776
15 sg:pub.10.1186/1471-2105-11-255
16 sg:pub.10.1186/1471-2105-12-s4-s6
17 sg:pub.10.1186/1471-2105-9-s1-s5
18 sg:pub.10.1186/1471-2164-11-s4-s24
19 https://app.dimensions.ai/details/publication/pub.1076890686
20 https://app.dimensions.ai/details/publication/pub.1077963499
21 https://doi.org/10.1016/j.cell.2010.11.033
22 https://doi.org/10.1016/j.jbi.2008.03.004
23 https://doi.org/10.1021/ci00057a005
24 https://doi.org/10.1021/ci025584y
25 https://doi.org/10.1093/bib/3.4.331
26 https://doi.org/10.1093/nar/gkj122
27 https://doi.org/10.1093/nar/gkm324
28 https://doi.org/10.1093/nar/gkm791
29 https://doi.org/10.1093/nar/gkq394
30 https://doi.org/10.1093/nar/gkr353
31 https://doi.org/10.1109/apscc.2009.5394148
32 https://doi.org/10.1109/mic.2007.133
33 schema:datePublished 2011-12
34 schema:datePublishedReg 2011-12-01
35 schema:description BACKGROUND: The development of high-throughput experimentation has led to astronomical growth in biologically relevant lipids and lipid derivatives identified, screened, and deposited in numerous online databases. Unfortunately, efforts to annotate, classify, and analyze these chemical entities have largely remained in the hands of human curators using manual or semi-automated protocols, leaving many novel entities unclassified. Since chemical function is often closely linked to structure, accurate structure-based classification and annotation of chemical entities is imperative to understanding their functionality. RESULTS: As part of an exploratory study, we have investigated the utility of semantic web technologies in automated chemical classification and annotation of lipids. Our prototype framework consists of two components: an ontology and a set of federated web services that operate upon it. The formal lipid ontology we use here extends a part of the LiPrO ontology and draws on the lipid hierarchy in the LIPID MAPS database, as well as literature-derived knowledge. The federated semantic web services that operate upon this ontology are deployed within the Semantic Annotation, Discovery, and Integration (SADI) framework. Structure-based lipid classification is enacted by two core services. Firstly, a structural annotation service detects and enumerates relevant functional groups for a specified chemical structure. A second service reasons over lipid ontology class descriptions using the attributes obtained from the annotation service and identifies the appropriate lipid classification. We extend the utility of these core services by combining them with additional SADI services that retrieve associations between lipids and proteins and identify publications related to specified lipid types. We analyze the performance of SADI-enabled eicosanoid classification relative to the LIPID MAPS classification and reflect on the contribution of our integrative methodology in the context of high-throughput lipidomics. CONCLUSIONS: Our prototype framework is capable of accurate automated classification of lipids and facile integration of lipid class information with additional data obtained with SADI web services. The potential of programming-free integration of external web services through the SADI framework offers an opportunity for development of powerful novel applications in lipidomics. We conclude that semantic web technologies can provide an accurate and versatile means of classification and annotation of lipids.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N2e7a4163b9974c73a94b8a4a63ddd916
40 N98e8abcaee904af2bd0077005ec9b564
41 sg:journal.1023786
42 schema:name Prototype semantic infrastructure for automated small molecule classification and annotation in lipidomics
43 schema:pagination 303
44 schema:productId N4d506968ae3a43548bfea88da5a6927a
45 N658d8a8214214e319fd8b7b9ffecbf05
46 N9983c4a23f3b4e229cc3f71778cd0327
47 Nd0af9198aa544b658d2af3daf832a61d
48 Ned19461400ec413395c98028b376aaa0
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029431299
50 https://doi.org/10.1186/1471-2105-12-303
51 schema:sdDatePublished 2019-04-11T10:28
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nabcff563b0ae4f2092f4b731cd80f0e9
54 schema:url https://link.springer.com/10.1186%2F1471-2105-12-303
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N249ec3ea065c44e2ac78968c5e71549c rdf:first sg:person.01221743726.44
59 rdf:rest N3825148396774b8da6fc22d95bf48144
60 N2e7a4163b9974c73a94b8a4a63ddd916 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N3825148396774b8da6fc22d95bf48144 rdf:first sg:person.01324655201.14
63 rdf:rest Neeca9bd392004456a5456d9b3cf3dcd2
64 N465b13e0c1364147b3cb04a593c3cf24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Proteins
66 rdf:type schema:DefinedTerm
67 N4d506968ae3a43548bfea88da5a6927a schema:name readcube_id
68 schema:value 8c3488f3beff8b79028fe138d2276783adb2de0ba2a5dfff8e0076aa3a8a2a2c
69 rdf:type schema:PropertyValue
70 N655c4f3215d84818b8cb226914936e9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Databases, Factual
72 rdf:type schema:DefinedTerm
73 N658d8a8214214e319fd8b7b9ffecbf05 schema:name doi
74 schema:value 10.1186/1471-2105-12-303
75 rdf:type schema:PropertyValue
76 N659dcb5e576c42318f8a88165f165742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N70b74c8a945e4ff3b8480886f5ebc898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Semantics
81 rdf:type schema:DefinedTerm
82 N942f9c2cadcf4cfd8bbc2a2d1c43105f rdf:first sg:person.0671323060.43
83 rdf:rest Nb9f1335fdc0a45ef9a0e6432f8c5f62a
84 N98e8abcaee904af2bd0077005ec9b564 schema:volumeNumber 12
85 rdf:type schema:PublicationVolume
86 N9983c4a23f3b4e229cc3f71778cd0327 schema:name pubmed_id
87 schema:value 21791100
88 rdf:type schema:PropertyValue
89 N9aeb90647f354b47b1d84d48ca6fe22a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Lipid Metabolism
91 rdf:type schema:DefinedTerm
92 Nabcff563b0ae4f2092f4b731cd80f0e9 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nb9f1335fdc0a45ef9a0e6432f8c5f62a rdf:first sg:person.01117002773.68
95 rdf:rest N249ec3ea065c44e2ac78968c5e71549c
96 Nd0af9198aa544b658d2af3daf832a61d schema:name dimensions_id
97 schema:value pub.1029431299
98 rdf:type schema:PropertyValue
99 Ned19461400ec413395c98028b376aaa0 schema:name nlm_unique_id
100 schema:value 100965194
101 rdf:type schema:PropertyValue
102 Neeca9bd392004456a5456d9b3cf3dcd2 rdf:first sg:person.0577526545.46
103 rdf:rest rdf:nil
104 Nf757c604083e474f8eb4642710b881d7 rdf:first sg:person.0642060675.11
105 rdf:rest N942f9c2cadcf4cfd8bbc2a2d1c43105f
106 Nfb80689708d84edcb3bcd9c5de6cb49f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Lipids
108 rdf:type schema:DefinedTerm
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information Systems
114 rdf:type schema:DefinedTerm
115 sg:journal.1023786 schema:issn 1471-2105
116 schema:name BMC Bioinformatics
117 rdf:type schema:Periodical
118 sg:person.01117002773.68 schema:affiliation https://www.grid.ac/institutes/grid.266820.8
119 schema:familyName Kouznetsov
120 schema:givenName Alexandre
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117002773.68
122 rdf:type schema:Person
123 sg:person.01221743726.44 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
124 schema:familyName Low
125 schema:givenName Hong Sang
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221743726.44
127 rdf:type schema:Person
128 sg:person.01324655201.14 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
129 schema:familyName Dumontier
130 schema:givenName Michel
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14
132 rdf:type schema:Person
133 sg:person.0577526545.46 schema:affiliation https://www.grid.ac/institutes/grid.266820.8
134 schema:familyName Baker
135 schema:givenName Christopher JO
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577526545.46
137 rdf:type schema:Person
138 sg:person.0642060675.11 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
139 schema:familyName Chepelev
140 schema:givenName Leonid L
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642060675.11
142 rdf:type schema:Person
143 sg:person.0671323060.43 schema:affiliation https://www.grid.ac/institutes/grid.266820.8
144 schema:familyName Riazanov
145 schema:givenName Alexandre
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671323060.43
147 rdf:type schema:Person
148 sg:pub.10.1007/978-3-540-77587-4_325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046456260
149 https://doi.org/10.1007/978-3-540-77587-4_325
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-642-10871-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009419361
152 https://doi.org/10.1007/978-3-642-10871-6_27
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
155 https://doi.org/10.1038/75556
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/npre.2010.5382.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014305010
158 https://doi.org/10.1038/npre.2010.5382.1
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nrd1776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036491584
161 https://doi.org/10.1038/nrd1776
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1471-2105-11-255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032664612
164 https://doi.org/10.1186/1471-2105-11-255
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-12-s4-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009093255
167 https://doi.org/10.1186/1471-2105-12-s4-s6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2105-9-s1-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027931701
170 https://doi.org/10.1186/1471-2105-9-s1-s5
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2164-11-s4-s24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049847528
173 https://doi.org/10.1186/1471-2164-11-s4-s24
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1076890686 schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1077963499 schema:CreativeWork
177 https://doi.org/10.1016/j.cell.2010.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011090370
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jbi.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030920077
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/ci00057a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055400944
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/ci025584y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033183422
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bib/3.4.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019711375
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/nar/gkj122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045301876
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/nar/gkm324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040184226
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/nar/gkm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045387827
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/nar/gkq394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027979443
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/nar/gkr353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043256930
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/apscc.2009.5394148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094257508
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/mic.2007.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061403699
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.266820.8 schema:alternateName University of New Brunswick
202 schema:name Department of Computer Science and Applied Statistics, University of New Brunswick, 100 Tucker Park Road, Saint John, Canada
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.34428.39 schema:alternateName Carleton University
205 schema:name Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Canada
206 Institute of Biochemistry, Carleton University, Colonel By Drive, 1125, Ottawa, Canada
207 School of Computer Science, Carleton University, Colonel By Drive, 1125, Ottawa, Canada
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
210 schema:name School of Computing, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, Southeast Asia
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...