A novel method to identify cooperative functional modules: study of module coordination in the Saccharomyces cerevisiae cell cycle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Jeh-Ting Hsu, Chien-Hua Peng, Wen-Ping Hsieh, Chung-Yu Lan, Chuan Yi Tang

ABSTRACT

BACKGROUND: Identifying key components in biological processes and their associations is critical for deciphering cellular functions. Recently, numerous gene expression and molecular interaction experiments have been reported in Saccharomyces cerevisiae, and these have enabled systematic studies. Although a number of approaches have been used to predict gene functions and interactions, tools that analyze the essential coordination of functional components in cellular processes still need to be developed. RESULTS: In this work, we present a new approach to study the cooperation of functional modules (sets of functionally related genes) in a specific cellular process. A cooperative module pair is defined as two modules that significantly cooperate with certain functional genes in a cellular process. This method identifies cooperative module pairs that significantly influence a cellular process and the correlated genes and interactions that are essential to that process. Using the yeast cell cycle as an example, we identified 101 cooperative module associations among 82 modules, and importantly, we established a cell cycle-specific cooperative module network. Most of the identified module pairs cover cooperative pathways and components essential to the cell cycle. We found that 14, 36, 18, 15, and 20 cooperative module pairs significantly cooperate with genes regulated in early G1, late G1, S, G2, and M phase, respectively. Fifty-nine module pairs that correlate with Cdc28 and other essential regulators were also identified. These results are consistent with previous studies and demonstrate that our methodology is effective for studying cooperative mechanisms in the cell cycle. CONCLUSIONS: In this work, we propose a new approach to identifying condition-related cooperative interactions, and importantly, we establish a cell cycle-specific cooperation module network. These results provide a global view of the cell cycle and the method can be used to discover the dynamic coordination properties of functional components in other cellular processes. More... »

PAGES

281

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2010-12. An overview of Cdk1-controlled targets and processes in CELL DIVISION
  • 2003-12. An automated method for finding molecular complexes in large protein interaction networks in BMC BIOINFORMATICS
  • 2004-09. Transcriptional regulatory code of a eukaryotic genome in NATURE
  • 2000-06. The fork'ed path to mitosis in GENOME BIOLOGY
  • 2001-12. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae in NATURE GENETICS
  • 2004-09. Genomic analysis of regulatory network dynamics reveals large topological changes in NATURE
  • 2007-12. Identification of functional modules using network topology and high-throughput data in BMC SYSTEMS BIOLOGY
  • 2004-07. Identifying combinatorial regulation of transcription factors and binding motifs in GENOME BIOLOGY
  • 1999-12. From molecular to modular cell biology in NATURE
  • 2009-12. Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients in BMC GENOMICS
  • 2005-02. Detection of parallel functional modules by comparative analysis of genome sequences in NATURE BIOTECHNOLOGY
  • 2008. Integrating Functional Genomics Data in BIOINFORMATICS
  • 2003-10. Targets of the cyclin-dependent kinase Cdk1 in NATURE
  • 2008-06. Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy in GENOME BIOLOGY
  • 2009-12. Arabidopsis gene co-expression network and its functional modules in BMC BIOINFORMATICS
  • 2006-03. Proteome survey reveals modularity of the yeast cell machinery in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-12-281

    DOI

    http://dx.doi.org/10.1186/1471-2105-12-281

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035763593

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21749690


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Cycle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mitosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Tsing Hua University", 
              "id": "https://www.grid.ac/institutes/grid.38348.34", 
              "name": [
                "Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsu", 
            "givenName": "Jeh-Ting", 
            "id": "sg:person.01062414122.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062414122.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Departments of Resource Center for Clinical Research, Chang Gung Memorial Hospital, 333, Taoyuan, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Chien-Hua", 
            "id": "sg:person.01330443073.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330443073.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Tsing Hua University", 
              "id": "https://www.grid.ac/institutes/grid.38348.34", 
              "name": [
                "Institute of Statistics, National Tsing Hua University, 30013, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsieh", 
            "givenName": "Wen-Ping", 
            "id": "sg:person.0601245733.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601245733.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Tsing Hua University", 
              "id": "https://www.grid.ac/institutes/grid.38348.34", 
              "name": [
                "Department of Life Science, National Tsing Hua University, 30013, Hsinchu, Taiwan", 
                "Institute of Molecular and Cellular Biology, National Tsing Hua University, 30013, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lan", 
            "givenName": "Chung-Yu", 
            "id": "sg:person.01030621463.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030621463.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Providence University", 
              "id": "https://www.grid.ac/institutes/grid.412550.7", 
              "name": [
                "Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan", 
                "Department of Computer Science and Information Engineering, Providence University, 43301, Taichung, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Chuan Yi", 
            "id": "sg:person.01312526135.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1101/gr.10.4.431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001478155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1075090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001953109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)80922-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002587832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/emboj.2009.229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004361441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-60327-429-6_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005870229", 
              "https://doi.org/10.1007/978-1-60327-429-6_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006618657", 
              "https://doi.org/10.1038/nature02800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006618657", 
              "https://doi.org/10.1038/nature02800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-437x(98)80140-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007131000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007291723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007734343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008654947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/30.1.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009221125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010718498", 
              "https://doi.org/10.1038/nbt1065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010718498", 
              "https://doi.org/10.1038/nbt1065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-s1-s5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010873868", 
              "https://doi.org/10.1186/gb-2008-9-s1-s5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-8-r56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010980355", 
              "https://doi.org/10.1186/gb-2004-5-8-r56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012344009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013256259", 
              "https://doi.org/10.1186/1471-2105-4-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013256259", 
              "https://doi.org/10.1186/1471-2105-4-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2439804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013811894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/974614.974652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015447990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/974614.974652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015447990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015857765", 
              "https://doi.org/10.1038/nature02062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015857765", 
              "https://doi.org/10.1038/nature02062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1091/mbc.10.5.1325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016986257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017305614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1747-1028-5-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018220065", 
              "https://doi.org/10.1186/1747-1028-5-11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0955-0674(93)90099-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018300803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.192159399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018429006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.19.8.5267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018927869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35011540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019498862", 
              "https://doi.org/10.1038/35011540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35011540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019498862", 
              "https://doi.org/10.1038/35011540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.107.4.1409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019740522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1073374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019781582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.25.14863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020882317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024019002", 
              "https://doi.org/10.1038/ng776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024019002", 
              "https://doi.org/10.1038/ng776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024039965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0237338100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025748240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1097-2765(00)80114-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027451892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028621876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bpc.2006.06.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030143591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031435825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031435825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033803529", 
              "https://doi.org/10.1038/nature02782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033803529", 
              "https://doi.org/10.1038/nature02782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-1-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037916747", 
              "https://doi.org/10.1186/1752-0509-1-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038327590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038673784", 
              "https://doi.org/10.1186/1471-2105-10-346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038673784", 
              "https://doi.org/10.1186/1471-2105-10-346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/emboj/19.14.3750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039052852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042478264", 
              "https://doi.org/10.1186/1471-2164-10-405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043981355", 
              "https://doi.org/10.1038/nature04532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043981355", 
              "https://doi.org/10.1038/nature04532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043981355", 
              "https://doi.org/10.1038/nature04532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.10.2.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046405795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0010039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050451093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0010039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050451093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2000-1-3-reviews1022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051328638", 
              "https://doi.org/10.1186/gb-2000-1-3-reviews1022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051333549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3847105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052290520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1099511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074670449", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789814447331_0040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096094020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: Identifying key components in biological processes and their associations is critical for deciphering cellular functions. Recently, numerous gene expression and molecular interaction experiments have been reported in Saccharomyces cerevisiae, and these have enabled systematic studies. Although a number of approaches have been used to predict gene functions and interactions, tools that analyze the essential coordination of functional components in cellular processes still need to be developed.\nRESULTS: In this work, we present a new approach to study the cooperation of functional modules (sets of functionally related genes) in a specific cellular process. A cooperative module pair is defined as two modules that significantly cooperate with certain functional genes in a cellular process. This method identifies cooperative module pairs that significantly influence a cellular process and the correlated genes and interactions that are essential to that process. Using the yeast cell cycle as an example, we identified 101 cooperative module associations among 82 modules, and importantly, we established a cell cycle-specific cooperative module network. Most of the identified module pairs cover cooperative pathways and components essential to the cell cycle. We found that 14, 36, 18, 15, and 20 cooperative module pairs significantly cooperate with genes regulated in early G1, late G1, S, G2, and M phase, respectively. Fifty-nine module pairs that correlate with Cdc28 and other essential regulators were also identified. These results are consistent with previous studies and demonstrate that our methodology is effective for studying cooperative mechanisms in the cell cycle.\nCONCLUSIONS: In this work, we propose a new approach to identifying condition-related cooperative interactions, and importantly, we establish a cell cycle-specific cooperation module network. These results provide a global view of the cell cycle and the method can be used to discover the dynamic coordination properties of functional components in other cellular processes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-12-281", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "A novel method to identify cooperative functional modules: study of module coordination in the Saccharomyces cerevisiae cell cycle", 
        "pagination": "281", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa5d6e0d2967fbde799b60cc9427b674e166e5709d4705c5e8b28d6651e0dfad"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21749690"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-12-281"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035763593"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-12-281", 
          "https://app.dimensions.ai/details/publication/pub.1035763593"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2F1471-2105-12-281"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-281'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-281'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-281'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-281'


     

    This table displays all metadata directly associated to this object as RDF triples.

    305 TRIPLES      21 PREDICATES      88 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-12-281 schema:about N05a1ad44f8354bd58aa58d3cb50b3c12
    2 N0e19f0cb52e54b54bef4206d07d76504
    3 N401a824f6de04dbfb208cc773b9ce583
    4 Nc5c52109bac048919b1ad9b5dfbbdacf
    5 Ne249dded2ed94bbca3ff26ad4ab52a52
    6 Nee4d40bcaca6472a9f56bc339c62d97a
    7 Nf75024de53fe4c0c8fac208840ca04a0
    8 anzsrc-for:06
    9 anzsrc-for:0601
    10 schema:author Nc916f7fd3ac84d2998985f922c80b661
    11 schema:citation sg:pub.10.1007/978-1-60327-429-6_14
    12 sg:pub.10.1038/35011540
    13 sg:pub.10.1038/75556
    14 sg:pub.10.1038/nature02062
    15 sg:pub.10.1038/nature02782
    16 sg:pub.10.1038/nature02800
    17 sg:pub.10.1038/nature04532
    18 sg:pub.10.1038/nbt1065
    19 sg:pub.10.1038/ng776
    20 sg:pub.10.1186/1471-2105-10-346
    21 sg:pub.10.1186/1471-2105-4-2
    22 sg:pub.10.1186/1471-2164-10-405
    23 sg:pub.10.1186/1747-1028-5-11
    24 sg:pub.10.1186/1752-0509-1-8
    25 sg:pub.10.1186/gb-2000-1-3-reviews1022
    26 sg:pub.10.1186/gb-2004-5-8-r56
    27 sg:pub.10.1186/gb-2008-9-s1-s5
    28 https://app.dimensions.ai/details/publication/pub.1074670449
    29 https://doi.org/10.1016/0955-0674(93)90099-c
    30 https://doi.org/10.1016/j.bpc.2006.06.012
    31 https://doi.org/10.1016/s0092-8674(00)80922-8
    32 https://doi.org/10.1016/s0959-437x(98)80140-8
    33 https://doi.org/10.1016/s1097-2765(00)80114-8
    34 https://doi.org/10.1038/emboj.2009.229
    35 https://doi.org/10.1073/pnas.0237338100
    36 https://doi.org/10.1073/pnas.192159399
    37 https://doi.org/10.1073/pnas.95.25.14863
    38 https://doi.org/10.1083/jcb.107.4.1409
    39 https://doi.org/10.1091/mbc.10.5.1325
    40 https://doi.org/10.1093/bioinformatics/bth234
    41 https://doi.org/10.1093/bioinformatics/bti093
    42 https://doi.org/10.1093/bioinformatics/bti599
    43 https://doi.org/10.1093/bioinformatics/bti722
    44 https://doi.org/10.1093/bioinformatics/btn200
    45 https://doi.org/10.1093/emboj/19.14.3750
    46 https://doi.org/10.1093/nar/28.1.27
    47 https://doi.org/10.1093/nar/30.1.31
    48 https://doi.org/10.1093/nar/gkh978
    49 https://doi.org/10.1093/nar/gki006
    50 https://doi.org/10.1093/nar/gkj109
    51 https://doi.org/10.1101/gad.10.2.129
    52 https://doi.org/10.1101/gr.10.4.431
    53 https://doi.org/10.1101/gr.2439804
    54 https://doi.org/10.1101/gr.3847105
    55 https://doi.org/10.1126/science.1073374
    56 https://doi.org/10.1126/science.1075090
    57 https://doi.org/10.1126/science.1099511
    58 https://doi.org/10.1128/mcb.19.8.5267
    59 https://doi.org/10.1142/9789814447331_0040
    60 https://doi.org/10.1145/974614.974652
    61 https://doi.org/10.1371/journal.pcbi.1000117
    62 https://doi.org/10.1371/journal.pgen.0010039
    63 schema:datePublished 2011-12
    64 schema:datePublishedReg 2011-12-01
    65 schema:description BACKGROUND: Identifying key components in biological processes and their associations is critical for deciphering cellular functions. Recently, numerous gene expression and molecular interaction experiments have been reported in Saccharomyces cerevisiae, and these have enabled systematic studies. Although a number of approaches have been used to predict gene functions and interactions, tools that analyze the essential coordination of functional components in cellular processes still need to be developed. RESULTS: In this work, we present a new approach to study the cooperation of functional modules (sets of functionally related genes) in a specific cellular process. A cooperative module pair is defined as two modules that significantly cooperate with certain functional genes in a cellular process. This method identifies cooperative module pairs that significantly influence a cellular process and the correlated genes and interactions that are essential to that process. Using the yeast cell cycle as an example, we identified 101 cooperative module associations among 82 modules, and importantly, we established a cell cycle-specific cooperative module network. Most of the identified module pairs cover cooperative pathways and components essential to the cell cycle. We found that 14, 36, 18, 15, and 20 cooperative module pairs significantly cooperate with genes regulated in early G1, late G1, S, G2, and M phase, respectively. Fifty-nine module pairs that correlate with Cdc28 and other essential regulators were also identified. These results are consistent with previous studies and demonstrate that our methodology is effective for studying cooperative mechanisms in the cell cycle. CONCLUSIONS: In this work, we propose a new approach to identifying condition-related cooperative interactions, and importantly, we establish a cell cycle-specific cooperation module network. These results provide a global view of the cell cycle and the method can be used to discover the dynamic coordination properties of functional components in other cellular processes.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree true
    69 schema:isPartOf N2ab75a0621b940e4a9adce68ff1a2d3e
    70 N6b602cc5a7a6486fb03eb01e599825be
    71 sg:journal.1023786
    72 schema:name A novel method to identify cooperative functional modules: study of module coordination in the Saccharomyces cerevisiae cell cycle
    73 schema:pagination 281
    74 schema:productId N5404508b0186481bbe0b712c6ee3b670
    75 N712a003c8ffc41c7805debcab56db497
    76 N90bcce827f5e49aca7a8bef4a0bf4202
    77 Nca69a9342ea645a1ae8cfec85b463d94
    78 Ne9cd487dbf06429eaae277122b2503f9
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035763593
    80 https://doi.org/10.1186/1471-2105-12-281
    81 schema:sdDatePublished 2019-04-11T10:33
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N686648e2c7e34a94a4eecb8cac49eda4
    84 schema:url https://link.springer.com/10.1186%2F1471-2105-12-281
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N05a1ad44f8354bd58aa58d3cb50b3c12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Signal Transduction
    90 rdf:type schema:DefinedTerm
    91 N0e19f0cb52e54b54bef4206d07d76504 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Gene Expression Regulation, Fungal
    93 rdf:type schema:DefinedTerm
    94 N2ab75a0621b940e4a9adce68ff1a2d3e schema:volumeNumber 12
    95 rdf:type schema:PublicationVolume
    96 N31ab7c53a3084b29ae32994527501576 rdf:first sg:person.01030621463.70
    97 rdf:rest N3885e90aec2946bbadbaffbe99c3878f
    98 N3885e90aec2946bbadbaffbe99c3878f rdf:first sg:person.01312526135.27
    99 rdf:rest rdf:nil
    100 N401a824f6de04dbfb208cc773b9ce583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Saccharomyces cerevisiae
    102 rdf:type schema:DefinedTerm
    103 N5404508b0186481bbe0b712c6ee3b670 schema:name doi
    104 schema:value 10.1186/1471-2105-12-281
    105 rdf:type schema:PropertyValue
    106 N686648e2c7e34a94a4eecb8cac49eda4 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N6b602cc5a7a6486fb03eb01e599825be schema:issueNumber 1
    109 rdf:type schema:PublicationIssue
    110 N6d2bc5267da1467d8a9ad95711da801e rdf:first sg:person.01330443073.99
    111 rdf:rest N8f6447948f224187a3b3e533bc8203d9
    112 N712a003c8ffc41c7805debcab56db497 schema:name nlm_unique_id
    113 schema:value 100965194
    114 rdf:type schema:PropertyValue
    115 N8f6447948f224187a3b3e533bc8203d9 rdf:first sg:person.0601245733.34
    116 rdf:rest N31ab7c53a3084b29ae32994527501576
    117 N90bcce827f5e49aca7a8bef4a0bf4202 schema:name pubmed_id
    118 schema:value 21749690
    119 rdf:type schema:PropertyValue
    120 Nc5c52109bac048919b1ad9b5dfbbdacf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Gene Expression Profiling
    122 rdf:type schema:DefinedTerm
    123 Nc916f7fd3ac84d2998985f922c80b661 rdf:first sg:person.01062414122.18
    124 rdf:rest N6d2bc5267da1467d8a9ad95711da801e
    125 Nca69a9342ea645a1ae8cfec85b463d94 schema:name readcube_id
    126 schema:value aa5d6e0d2967fbde799b60cc9427b674e166e5709d4705c5e8b28d6651e0dfad
    127 rdf:type schema:PropertyValue
    128 Ne249dded2ed94bbca3ff26ad4ab52a52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Saccharomyces cerevisiae Proteins
    130 rdf:type schema:DefinedTerm
    131 Ne9cd487dbf06429eaae277122b2503f9 schema:name dimensions_id
    132 schema:value pub.1035763593
    133 rdf:type schema:PropertyValue
    134 Nee4d40bcaca6472a9f56bc339c62d97a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Cell Cycle
    136 rdf:type schema:DefinedTerm
    137 Nf247299f47354ab8b64a07ca5bfdf8af schema:name Departments of Resource Center for Clinical Research, Chang Gung Memorial Hospital, 333, Taoyuan, Taiwan
    138 rdf:type schema:Organization
    139 Nf75024de53fe4c0c8fac208840ca04a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Mitosis
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Biological Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Biochemistry and Cell Biology
    147 rdf:type schema:DefinedTerm
    148 sg:journal.1023786 schema:issn 1471-2105
    149 schema:name BMC Bioinformatics
    150 rdf:type schema:Periodical
    151 sg:person.01030621463.70 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
    152 schema:familyName Lan
    153 schema:givenName Chung-Yu
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030621463.70
    155 rdf:type schema:Person
    156 sg:person.01062414122.18 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
    157 schema:familyName Hsu
    158 schema:givenName Jeh-Ting
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062414122.18
    160 rdf:type schema:Person
    161 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
    162 schema:familyName Tang
    163 schema:givenName Chuan Yi
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
    165 rdf:type schema:Person
    166 sg:person.01330443073.99 schema:affiliation Nf247299f47354ab8b64a07ca5bfdf8af
    167 schema:familyName Peng
    168 schema:givenName Chien-Hua
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330443073.99
    170 rdf:type schema:Person
    171 sg:person.0601245733.34 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
    172 schema:familyName Hsieh
    173 schema:givenName Wen-Ping
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601245733.34
    175 rdf:type schema:Person
    176 sg:pub.10.1007/978-1-60327-429-6_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005870229
    177 https://doi.org/10.1007/978-1-60327-429-6_14
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/35011540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019498862
    180 https://doi.org/10.1038/35011540
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    183 https://doi.org/10.1038/75556
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature02062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015857765
    186 https://doi.org/10.1038/nature02062
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature02782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033803529
    189 https://doi.org/10.1038/nature02782
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature02800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006618657
    192 https://doi.org/10.1038/nature02800
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature04532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043981355
    195 https://doi.org/10.1038/nature04532
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nbt1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010718498
    198 https://doi.org/10.1038/nbt1065
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/ng776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024019002
    201 https://doi.org/10.1038/ng776
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1186/1471-2105-10-346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038673784
    204 https://doi.org/10.1186/1471-2105-10-346
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/1471-2105-4-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013256259
    207 https://doi.org/10.1186/1471-2105-4-2
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/1471-2164-10-405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042478264
    210 https://doi.org/10.1186/1471-2164-10-405
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/1747-1028-5-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018220065
    213 https://doi.org/10.1186/1747-1028-5-11
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1752-0509-1-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916747
    216 https://doi.org/10.1186/1752-0509-1-8
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/gb-2000-1-3-reviews1022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051328638
    219 https://doi.org/10.1186/gb-2000-1-3-reviews1022
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/gb-2004-5-8-r56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010980355
    222 https://doi.org/10.1186/gb-2004-5-8-r56
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/gb-2008-9-s1-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010873868
    225 https://doi.org/10.1186/gb-2008-9-s1-s5
    226 rdf:type schema:CreativeWork
    227 https://app.dimensions.ai/details/publication/pub.1074670449 schema:CreativeWork
    228 https://doi.org/10.1016/0955-0674(93)90099-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1018300803
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.bpc.2006.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030143591
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/s0092-8674(00)80922-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002587832
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/s0959-437x(98)80140-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007131000
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/s1097-2765(00)80114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451892
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1038/emboj.2009.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004361441
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1073/pnas.0237338100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025748240
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1073/pnas.192159399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018429006
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1083/jcb.107.4.1409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019740522
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1091/mbc.10.5.1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016986257
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/bth234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038327590
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/bioinformatics/bti093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028621876
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bioinformatics/bti599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008654947
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/bioinformatics/bti722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031435825
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/bioinformatics/btn200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007291723
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/emboj/19.14.3750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039052852
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/nar/30.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009221125
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/nar/gkh978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051333549
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/nar/gki006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012344009
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/nar/gkj109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007734343
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1101/gad.10.2.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046405795
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1101/gr.10.4.431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001478155
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1101/gr.2439804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811894
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1101/gr.3847105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052290520
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1126/science.1099511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449759
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1128/mcb.19.8.5267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018927869
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1142/9789814447331_0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096094020
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1145/974614.974652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015447990
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1371/journal.pcbi.1000117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024039965
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1371/journal.pgen.0010039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050451093
    295 rdf:type schema:CreativeWork
    296 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
    297 schema:name Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan
    298 Department of Life Science, National Tsing Hua University, 30013, Hsinchu, Taiwan
    299 Institute of Molecular and Cellular Biology, National Tsing Hua University, 30013, Hsinchu, Taiwan
    300 Institute of Statistics, National Tsing Hua University, 30013, Hsinchu, Taiwan
    301 rdf:type schema:Organization
    302 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
    303 schema:name Department of Computer Science and Information Engineering, Providence University, 43301, Taichung, Taiwan
    304 Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan
    305 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...