Detection of lineage-specific evolutionary changes among primate species View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-07-04

AUTHORS

Mihaela Pertea, Geo M Pertea, Steven L Salzberg

ABSTRACT

BackgroundComparison of the human genome with other primates offers the opportunity to detect evolutionary events that created the diverse phenotypes among the primate species. Because the primate genomes are highly similar to one another, methods developed for analysis of more divergent species do not always detect signs of evolutionary selection.ResultsWe have developed a new method, called DivE, specifically designed to find regions that have evolved either more or less rapidly than expected, for any clade within a set of very closely related species. Unlike some previous methods, DivE does not rely on rates of synonymous and nonsynonymous substitution, which enables it to detect evolutionary events in noncoding regions. We demonstrate using simulated data that DivE compares favorably to alternative methods, and we then apply DivE to the ENCODE regions in 14 primate species. We identify thousands of regions in these primates, ranging from 50 to >10000 bp in length, that appear to have experienced either constrained or accelerated rates of evolution. In particular, we detected 4942 regions that have potentially undergone positive selection in one or more primate species. Most of these regions occur outside of protein-coding genes, although we identified 20 proteins that have experienced positive selection.ConclusionsDivE provides an easy-to-use method to predict both positive and negative selection in noncoding DNA, that is particularly well-suited to detecting lineage-specific selection in large genomes. More... »

PAGES

274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-274

DOI

http://dx.doi.org/10.1186/1471-2105-12-274

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017402447

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21726447


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Evolutionary Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pertea", 
        "givenName": "Mihaela", 
        "id": "sg:person.0720234625.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720234625.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pertea", 
        "givenName": "Geo M", 
        "id": "sg:person.01024612415.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612415.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salzberg", 
        "givenName": "Steven L", 
        "id": "sg:person.01223441713.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973203", 
          "https://doi.org/10.1038/10290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-10-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018461526", 
          "https://doi.org/10.1186/1471-2148-10-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039854529", 
          "https://doi.org/10.1038/nature01262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042676864", 
          "https://doi.org/10.1038/nature04072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-6-r118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052831311", 
          "https://doi.org/10.1186/gb-2007-8-6-r118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-5-206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042136844", 
          "https://doi.org/10.1186/gb-2010-11-5-206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11732990_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003499206", 
          "https://doi.org/10.1007/11732990_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385151a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051641260", 
          "https://doi.org/10.1038/385151a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038590247", 
          "https://doi.org/10.1038/ng2104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-s1-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003630706", 
          "https://doi.org/10.1186/gb-2006-7-s1-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010551629", 
          "https://doi.org/10.1186/1471-2105-6-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07-04", 
    "datePublishedReg": "2011-07-04", 
    "description": "BackgroundComparison of the human genome with other primates offers the opportunity to detect evolutionary events that created the diverse phenotypes among the primate species. Because the primate genomes are highly similar to one another, methods developed for analysis of more divergent species do not always detect signs of evolutionary selection.ResultsWe have developed a new method, called DivE, specifically designed to find regions that have evolved either more or less rapidly than expected, for any clade within a set of very closely related species. Unlike some previous methods, DivE does not rely on rates of synonymous and nonsynonymous substitution, which enables it to detect evolutionary events in noncoding regions. We demonstrate using simulated data that DivE compares favorably to alternative methods, and we then apply DivE to the ENCODE regions in 14 primate species. We identify thousands of regions in these primates, ranging from 50 to >10000 bp in length, that appear to have experienced either constrained or accelerated rates of evolution. In particular, we detected 4942 regions that have potentially undergone positive selection in one or more primate species. Most of these regions occur outside of protein-coding genes, although we identified 20 proteins that have experienced positive selection.ConclusionsDivE provides an easy-to-use method to predict both positive and negative selection in noncoding DNA, that is particularly well-suited to detecting lineage-specific selection in large genomes.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-12-274", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529453", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529425", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2519905", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2545461", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "evolutionary events", 
      "primate species", 
      "positive selection", 
      "lineage-specific selection", 
      "protein-coding genes", 
      "more divergent species", 
      "more primate species", 
      "rate of evolution", 
      "thousands of regions", 
      "divergent species", 
      "primate genomes", 
      "large genomes", 
      "related species", 
      "evolutionary change", 
      "human genome", 
      "nonsynonymous substitutions", 
      "ENCODE regions", 
      "evolutionary selection", 
      "genome", 
      "diverse phenotypes", 
      "species", 
      "negative selection", 
      "clade", 
      "genes", 
      "selection", 
      "primates", 
      "protein", 
      "DNA", 
      "phenotype", 
      "region", 
      "BP", 
      "dive", 
      "evolution", 
      "events", 
      "substitution", 
      "thousands", 
      "changes", 
      "length", 
      "analysis", 
      "ResultsWe", 
      "rate", 
      "alternative method", 
      "data", 
      "set", 
      "opportunities", 
      "use method", 
      "detection", 
      "method", 
      "previous methods", 
      "new method", 
      "signs", 
      "BackgroundComparisons"
    ], 
    "name": "Detection of lineage-specific evolutionary changes among primate species", 
    "pagination": "274", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017402447"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-274"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21726447"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-274", 
      "https://app.dimensions.ai/details/publication/pub.1017402447"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_543.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-12-274"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-274'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-274'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-274'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-274'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      99 URIs      77 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-274 schema:about N14bf7483185c47959dd66ea0e743ccb2
2 N16a8dac495934c2da50715fb96d9bde3
3 N1c673c55e5d44ffa95966259c37b105c
4 N214bcde17cf5485f86cd65613be0967d
5 N5f7740c685e04529b8b081ada832d054
6 N8636319b98194fc4897a054d31d8e74f
7 N9b32afd5d06a4ad98ed7af40e8d8bd5d
8 Ndcc4749352204a738f439ecd84ad28cb
9 anzsrc-for:06
10 anzsrc-for:0603
11 anzsrc-for:0604
12 schema:author Nc75c0943a51545469b6a146f129d79e8
13 schema:citation sg:pub.10.1007/11732990_17
14 sg:pub.10.1007/bf01734359
15 sg:pub.10.1038/10290
16 sg:pub.10.1038/385151a0
17 sg:pub.10.1038/75556
18 sg:pub.10.1038/nature01262
19 sg:pub.10.1038/nature04072
20 sg:pub.10.1038/ng2104
21 sg:pub.10.1186/1471-2105-6-31
22 sg:pub.10.1186/1471-2148-10-39
23 sg:pub.10.1186/gb-2006-7-s1-s4
24 sg:pub.10.1186/gb-2007-8-6-r118
25 sg:pub.10.1186/gb-2010-11-5-206
26 schema:datePublished 2011-07-04
27 schema:datePublishedReg 2011-07-04
28 schema:description BackgroundComparison of the human genome with other primates offers the opportunity to detect evolutionary events that created the diverse phenotypes among the primate species. Because the primate genomes are highly similar to one another, methods developed for analysis of more divergent species do not always detect signs of evolutionary selection.ResultsWe have developed a new method, called DivE, specifically designed to find regions that have evolved either more or less rapidly than expected, for any clade within a set of very closely related species. Unlike some previous methods, DivE does not rely on rates of synonymous and nonsynonymous substitution, which enables it to detect evolutionary events in noncoding regions. We demonstrate using simulated data that DivE compares favorably to alternative methods, and we then apply DivE to the ENCODE regions in 14 primate species. We identify thousands of regions in these primates, ranging from 50 to >10000 bp in length, that appear to have experienced either constrained or accelerated rates of evolution. In particular, we detected 4942 regions that have potentially undergone positive selection in one or more primate species. Most of these regions occur outside of protein-coding genes, although we identified 20 proteins that have experienced positive selection.ConclusionsDivE provides an easy-to-use method to predict both positive and negative selection in noncoding DNA, that is particularly well-suited to detecting lineage-specific selection in large genomes.
29 schema:genre article
30 schema:isAccessibleForFree true
31 schema:isPartOf N732065e2a1f941d58334314b5acb8a82
32 Nbb50d90ebe70448b8311472ac5f39d96
33 sg:journal.1023786
34 schema:keywords BP
35 BackgroundComparisons
36 DNA
37 ENCODE regions
38 ResultsWe
39 alternative method
40 analysis
41 changes
42 clade
43 data
44 detection
45 dive
46 divergent species
47 diverse phenotypes
48 events
49 evolution
50 evolutionary change
51 evolutionary events
52 evolutionary selection
53 genes
54 genome
55 human genome
56 large genomes
57 length
58 lineage-specific selection
59 method
60 more divergent species
61 more primate species
62 negative selection
63 new method
64 nonsynonymous substitutions
65 opportunities
66 phenotype
67 positive selection
68 previous methods
69 primate genomes
70 primate species
71 primates
72 protein
73 protein-coding genes
74 rate
75 rate of evolution
76 region
77 related species
78 selection
79 set
80 signs
81 species
82 substitution
83 thousands
84 thousands of regions
85 use method
86 schema:name Detection of lineage-specific evolutionary changes among primate species
87 schema:pagination 274
88 schema:productId N4a7fd3c77dc3466cb5961aec7afaa98b
89 Nbe8de1eff1bf436aa021b65c446af659
90 Ne19be5d6def6480e8869d41c3eb61d22
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017402447
92 https://doi.org/10.1186/1471-2105-12-274
93 schema:sdDatePublished 2022-10-01T06:36
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N83ac339f1b5748bcba5bf4c7e168e087
96 schema:url https://doi.org/10.1186/1471-2105-12-274
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N14bf7483185c47959dd66ea0e743ccb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Primates
102 rdf:type schema:DefinedTerm
103 N16a8dac495934c2da50715fb96d9bde3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Software
105 rdf:type schema:DefinedTerm
106 N1c673c55e5d44ffa95966259c37b105c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Genome, Human
108 rdf:type schema:DefinedTerm
109 N214bcde17cf5485f86cd65613be0967d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Genome
111 rdf:type schema:DefinedTerm
112 N4a7fd3c77dc3466cb5961aec7afaa98b schema:name pubmed_id
113 schema:value 21726447
114 rdf:type schema:PropertyValue
115 N5f7740c685e04529b8b081ada832d054 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Biological Evolution
117 rdf:type schema:DefinedTerm
118 N64572c77a86e43b4848b9d8eda98a4e3 rdf:first sg:person.01024612415.46
119 rdf:rest Nf5e5e07cecd7449f9af8dd6173112f3c
120 N732065e2a1f941d58334314b5acb8a82 schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 N83ac339f1b5748bcba5bf4c7e168e087 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N8636319b98194fc4897a054d31d8e74f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Animals
126 rdf:type schema:DefinedTerm
127 N9b32afd5d06a4ad98ed7af40e8d8bd5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Phylogeny
129 rdf:type schema:DefinedTerm
130 Nbb50d90ebe70448b8311472ac5f39d96 schema:volumeNumber 12
131 rdf:type schema:PublicationVolume
132 Nbe8de1eff1bf436aa021b65c446af659 schema:name dimensions_id
133 schema:value pub.1017402447
134 rdf:type schema:PropertyValue
135 Nc75c0943a51545469b6a146f129d79e8 rdf:first sg:person.0720234625.35
136 rdf:rest N64572c77a86e43b4848b9d8eda98a4e3
137 Ndcc4749352204a738f439ecd84ad28cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Humans
139 rdf:type schema:DefinedTerm
140 Ne19be5d6def6480e8869d41c3eb61d22 schema:name doi
141 schema:value 10.1186/1471-2105-12-274
142 rdf:type schema:PropertyValue
143 Nf5e5e07cecd7449f9af8dd6173112f3c rdf:first sg:person.01223441713.02
144 rdf:rest rdf:nil
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
149 schema:name Evolutionary Biology
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
152 schema:name Genetics
153 rdf:type schema:DefinedTerm
154 sg:grant.2519905 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-274
155 rdf:type schema:MonetaryGrant
156 sg:grant.2529425 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-274
157 rdf:type schema:MonetaryGrant
158 sg:grant.2529453 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-274
159 rdf:type schema:MonetaryGrant
160 sg:grant.2545461 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-274
161 rdf:type schema:MonetaryGrant
162 sg:journal.1023786 schema:issn 1471-2105
163 schema:name BMC Bioinformatics
164 schema:publisher Springer Nature
165 rdf:type schema:Periodical
166 sg:person.01024612415.46 schema:affiliation grid-institutes:grid.164295.d
167 schema:familyName Pertea
168 schema:givenName Geo M
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612415.46
170 rdf:type schema:Person
171 sg:person.01223441713.02 schema:affiliation grid-institutes:grid.21107.35
172 schema:familyName Salzberg
173 schema:givenName Steven L
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02
175 rdf:type schema:Person
176 sg:person.0720234625.35 schema:affiliation grid-institutes:grid.164295.d
177 schema:familyName Pertea
178 schema:givenName Mihaela
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720234625.35
180 rdf:type schema:Person
181 sg:pub.10.1007/11732990_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003499206
182 https://doi.org/10.1007/11732990_17
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/bf01734359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065382
185 https://doi.org/10.1007/bf01734359
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973203
188 https://doi.org/10.1038/10290
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/385151a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051641260
191 https://doi.org/10.1038/385151a0
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
194 https://doi.org/10.1038/75556
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature01262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039854529
197 https://doi.org/10.1038/nature01262
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature04072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042676864
200 https://doi.org/10.1038/nature04072
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ng2104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038590247
203 https://doi.org/10.1038/ng2104
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1471-2105-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010551629
206 https://doi.org/10.1186/1471-2105-6-31
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2148-10-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018461526
209 https://doi.org/10.1186/1471-2148-10-39
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/gb-2006-7-s1-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003630706
212 https://doi.org/10.1186/gb-2006-7-s1-s4
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/gb-2007-8-6-r118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052831311
215 https://doi.org/10.1186/gb-2007-8-6-r118
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/gb-2010-11-5-206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042136844
218 https://doi.org/10.1186/gb-2010-11-5-206
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.164295.d schema:alternateName Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
221 schema:name Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
222 rdf:type schema:Organization
223 grid-institutes:grid.21107.35 schema:alternateName McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
224 schema:name McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...