Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Torbjørn Rognes

ABSTRACT

BACKGROUND: The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. RESULTS: A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. CONCLUSIONS: Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance. More... »

PAGES

221

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-221

DOI

http://dx.doi.org/10.1186/1471-2105-12-221

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010513713

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21631914


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Programming Languages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sencel Bioinformatics (Norway)", 
          "id": "https://www.grid.ac/institutes/grid.458831.3", 
          "name": [
            "Department of Informatics, University of Oslo, PO Box 1080, NO-0316, Blindern, Oslo, Norway", 
            "Centre for Molecular Biology and Neuroscience (CMBN), Department of Microbiology, Rikshospitalet, Oslo University Hospital, PO Box 4950, NO-0424, Nydalen, Oslo, Norway", 
            "Sencel Bioinformatics AS, PO Box 180, NO-0319, Vinderen, Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rognes", 
        "givenName": "Torbj\u00f8rn", 
        "id": "sg:person.01304226265.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304226265.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkp846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006602999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/13.2.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008319186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009826728", 
          "https://doi.org/10.1186/1471-2105-9-377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009826728", 
          "https://doi.org/10.1186/1471-2105-9-377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.22.10915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014155557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-2-73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016918082", 
          "https://doi.org/10.1186/1756-0500-2-73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-384988-5.00011-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017852546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-1-107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023265691", 
          "https://doi.org/10.1186/1756-0500-1-107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024279614", 
          "https://doi.org/10.1186/1471-2105-8-185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024279614", 
          "https://doi.org/10.1186/1471-2105-8-185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.8.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025315480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039097186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-3-93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041106303", 
          "https://doi.org/10.1186/1756-0500-3-93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052838811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2009.5160931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094780600"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation.\nRESULTS: A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License.\nCONCLUSIONS: Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-12-221", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation", 
    "pagination": "221", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3216829ee180732a981f613819f94e81f82537d78e65dd5dbbf0212845f3c032"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21631914"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-221"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010513713"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-221", 
      "https://app.dimensions.ai/details/publication/pub.1010513713"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-12-221"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-221'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-221'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-221'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-221'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      56 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-221 schema:about N506d84037a7a4c8cae61c648ddc04073
2 N587b79951d9c4f0d9ba3a1e8a178231d
3 N6a08fc8774c542eea7fb6af2f92d0370
4 N7c58af6e7db043d287f02f77e0f733f4
5 N8d4fa1facfbe4b6f9939d5ed588d1528
6 Nba02758200204f14973a82cfed38fba4
7 Nc0370f8c61f8433d8c89c085ed2a4cab
8 Ne43b225a0b3c42f1ba9acbe9dd93545c
9 Nee3e173aeb5d48ebbbf39b1430d59151
10 anzsrc-for:08
11 anzsrc-for:0806
12 schema:author Nc66830b99d98456aa1e9cd4aa7eccfe3
13 schema:citation sg:pub.10.1186/1471-2105-8-185
14 sg:pub.10.1186/1471-2105-9-377
15 sg:pub.10.1186/1756-0500-1-107
16 sg:pub.10.1186/1756-0500-2-73
17 sg:pub.10.1186/1756-0500-3-93
18 https://doi.org/10.1016/0022-2836(81)90087-5
19 https://doi.org/10.1016/0022-2836(82)90398-9
20 https://doi.org/10.1016/b978-0-12-384988-5.00011-5
21 https://doi.org/10.1016/j.ygeno.2010.03.001
22 https://doi.org/10.1016/s0022-2836(05)80360-2
23 https://doi.org/10.1073/pnas.89.22.10915
24 https://doi.org/10.1093/bioinformatics/13.2.145
25 https://doi.org/10.1093/bioinformatics/16.8.699
26 https://doi.org/10.1093/bioinformatics/btl582
27 https://doi.org/10.1093/nar/25.17.3389
28 https://doi.org/10.1093/nar/gkp846
29 https://doi.org/10.1109/ipdps.2009.5160931
30 https://doi.org/10.1371/journal.pcbi.1000386
31 schema:datePublished 2011-12
32 schema:datePublishedReg 2011-12-01
33 schema:description BACKGROUND: The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. RESULTS: A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. CONCLUSIONS: Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N028bdc7f724a4337ad2892eb40631a80
38 N36b71f8d23ba41e6bf6d16f23ca31b2d
39 sg:journal.1023786
40 schema:name Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation
41 schema:pagination 221
42 schema:productId N0e709d8a58544a399e85202a76b72779
43 N20ebe56c38ec418e9805ac010d97b979
44 Na89518061ff2408f93af95a1d4ce5fda
45 Nb2478e86cbe94e9698d588963e276af0
46 Nd80dd95346294272ad40f77a2c20c3ae
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010513713
48 https://doi.org/10.1186/1471-2105-12-221
49 schema:sdDatePublished 2019-04-10T14:16
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nc4ef697d8ee84a67987721512f0cef06
52 schema:url http://link.springer.com/10.1186/1471-2105-12-221
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N028bdc7f724a4337ad2892eb40631a80 schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 N0e709d8a58544a399e85202a76b72779 schema:name dimensions_id
59 schema:value pub.1010513713
60 rdf:type schema:PropertyValue
61 N20ebe56c38ec418e9805ac010d97b979 schema:name readcube_id
62 schema:value 3216829ee180732a981f613819f94e81f82537d78e65dd5dbbf0212845f3c032
63 rdf:type schema:PropertyValue
64 N36b71f8d23ba41e6bf6d16f23ca31b2d schema:volumeNumber 12
65 rdf:type schema:PublicationVolume
66 N506d84037a7a4c8cae61c648ddc04073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Algorithms
68 rdf:type schema:DefinedTerm
69 N587b79951d9c4f0d9ba3a1e8a178231d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Computers
71 rdf:type schema:DefinedTerm
72 N6a08fc8774c542eea7fb6af2f92d0370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Software
74 rdf:type schema:DefinedTerm
75 N7c58af6e7db043d287f02f77e0f733f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Proteins
77 rdf:type schema:DefinedTerm
78 N8d4fa1facfbe4b6f9939d5ed588d1528 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Sequence Alignment
80 rdf:type schema:DefinedTerm
81 Na89518061ff2408f93af95a1d4ce5fda schema:name pubmed_id
82 schema:value 21631914
83 rdf:type schema:PropertyValue
84 Nb2478e86cbe94e9698d588963e276af0 schema:name nlm_unique_id
85 schema:value 100965194
86 rdf:type schema:PropertyValue
87 Nba02758200204f14973a82cfed38fba4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Amino Acid Sequence
89 rdf:type schema:DefinedTerm
90 Nc0370f8c61f8433d8c89c085ed2a4cab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Molecular Sequence Data
92 rdf:type schema:DefinedTerm
93 Nc4ef697d8ee84a67987721512f0cef06 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nc66830b99d98456aa1e9cd4aa7eccfe3 rdf:first sg:person.01304226265.49
96 rdf:rest rdf:nil
97 Nd80dd95346294272ad40f77a2c20c3ae schema:name doi
98 schema:value 10.1186/1471-2105-12-221
99 rdf:type schema:PropertyValue
100 Ne43b225a0b3c42f1ba9acbe9dd93545c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Databases, Protein
102 rdf:type schema:DefinedTerm
103 Nee3e173aeb5d48ebbbf39b1430d59151 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Programming Languages
105 rdf:type schema:DefinedTerm
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information Systems
111 rdf:type schema:DefinedTerm
112 sg:journal.1023786 schema:issn 1471-2105
113 schema:name BMC Bioinformatics
114 rdf:type schema:Periodical
115 sg:person.01304226265.49 schema:affiliation https://www.grid.ac/institutes/grid.458831.3
116 schema:familyName Rognes
117 schema:givenName Torbjørn
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304226265.49
119 rdf:type schema:Person
120 sg:pub.10.1186/1471-2105-8-185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024279614
121 https://doi.org/10.1186/1471-2105-8-185
122 rdf:type schema:CreativeWork
123 sg:pub.10.1186/1471-2105-9-377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009826728
124 https://doi.org/10.1186/1471-2105-9-377
125 rdf:type schema:CreativeWork
126 sg:pub.10.1186/1756-0500-1-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023265691
127 https://doi.org/10.1186/1756-0500-1-107
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1756-0500-2-73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016918082
130 https://doi.org/10.1186/1756-0500-2-73
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/1756-0500-3-93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041106303
133 https://doi.org/10.1186/1756-0500-3-93
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/b978-0-12-384988-5.00011-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017852546
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ygeno.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052838811
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.89.22.10915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234644
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/13.2.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008319186
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/bioinformatics/16.8.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025315480
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bioinformatics/btl582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014155557
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/nar/gkp846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006602999
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/ipdps.2009.5160931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094780600
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1371/journal.pcbi.1000386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039097186
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.458831.3 schema:alternateName Sencel Bioinformatics (Norway)
162 schema:name Centre for Molecular Biology and Neuroscience (CMBN), Department of Microbiology, Rikshospitalet, Oslo University Hospital, PO Box 4950, NO-0424, Nydalen, Oslo, Norway
163 Department of Informatics, University of Oslo, PO Box 1080, NO-0316, Blindern, Oslo, Norway
164 Sencel Bioinformatics AS, PO Box 180, NO-0319, Vinderen, Oslo, Norway
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...