NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-14

AUTHORS

Daniel Restrepo-Montoya, Camilo Pino, Luis F Nino, Manuel E Patarroyo, Manuel A Patarroyo

ABSTRACT

BACKGROUND: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins. RESULTS: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search. CONCLUSIONS: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/. More... »

PAGES

21-21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-21

DOI

http://dx.doi.org/10.1186/1471-2105-12-21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052011094

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21235786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gram-Positive Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.418087.2", 
          "name": [
            "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia", 
            "Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia", 
            "School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogot\u00e1 DC, Colombia", 
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Restrepo-Montoya", 
        "givenName": "Daniel", 
        "id": "sg:person.0767765751.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767765751.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pino", 
        "givenName": "Camilo", 
        "id": "sg:person.01212103625.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212103625.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia", 
            "Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nino", 
        "givenName": "Luis F", 
        "id": "sg:person.011066666273.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066666273.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.418087.2", 
          "name": [
            "School of Medicine, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia", 
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarroyo", 
        "givenName": "Manuel E", 
        "id": "sg:person.011340230117.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340230117.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.418087.2", 
          "name": [
            "School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogot\u00e1 DC, Colombia", 
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarroyo", 
        "givenName": "Manuel A", 
        "id": "sg:person.013576664717.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576664717.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nprot.2007.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037402439", 
          "https://doi.org/10.1038/nprot.2007.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034791610", 
          "https://doi.org/10.1186/1471-2105-7-91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045475049", 
          "https://doi.org/10.1186/1471-2105-8-463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038400960", 
          "https://doi.org/10.1186/1471-2105-9-201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-5-58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017810504", 
          "https://doi.org/10.1186/1471-2180-5-58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028478311", 
          "https://doi.org/10.1007/978-1-4757-3264-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029185104", 
          "https://doi.org/10.1186/1471-2105-9-62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024199982", 
          "https://doi.org/10.1186/1471-2105-9-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-007-0616-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014075029", 
          "https://doi.org/10.1007/s00726-007-0616-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011067150", 
          "https://doi.org/10.1186/1471-2105-6-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053097004", 
          "https://doi.org/10.1186/1471-2105-10-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020696810938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038649582", 
          "https://doi.org/10.1023/a:1020696810938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049528192", 
          "https://doi.org/10.1186/1471-2105-9-173"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01-14", 
    "datePublishedReg": "2011-01-14", 
    "description": "BACKGROUND: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins.\nRESULTS: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search.\nCONCLUSIONS: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-12-21", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "support vector machine", 
      "kernel function", 
      "possible feature vectors", 
      "feature-based classifier", 
      "Gaussian kernel function", 
      "feature vectors", 
      "vector machine", 
      "grid search", 
      "sequence-based classifier", 
      "classifier", 
      "Gram-positive bacterial proteins", 
      "predictive performance", 
      "independent set", 
      "machine", 
      "predictive methods", 
      "Web", 
      "best model", 
      "implementation", 
      "model parameters", 
      "vector", 
      "model", 
      "set", 
      "v2.0", 
      "search", 
      "performance", 
      "method", 
      "error", 
      "final model", 
      "identification", 
      "bacterial proteins", 
      "parameters", 
      "protein secretion mechanisms", 
      "polynomials", 
      "function", 
      "fact", 
      "loop", 
      "secreted proteins", 
      "Gram-positive bacteria", 
      "transformation vectors", 
      "secretion mechanism", 
      "combination", 
      "protein", 
      "linear", 
      "mechanism", 
      "bacteria", 
      "study", 
      "group", 
      "CV group", 
      "Co/", 
      "CV loop", 
      "Most predictive methods", 
      "different sequence transformation vectors", 
      "sequence transformation vectors", 
      "Nested k", 
      "inner CV loop", 
      "outer CV group", 
      "SecretomeP V2.0", 
      "SecretPV2.0", 
      "nclassgpositive/."
    ], 
    "name": "NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins", 
    "pagination": "21-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052011094"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-21"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21235786"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-21", 
      "https://app.dimensions.ai/details/publication/pub.1052011094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_553.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-12-21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      22 PREDICATES      106 URIs      84 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-21 schema:about N323ddd6de90c46808a994f9b8ad74db6
2 N5300fbab8e5a4229987788971efabecf
3 N57b7e54d36c74f0f9a0e3540252a0a3d
4 N726977c453d04fd1a25c61bf1dc99bca
5 N8cf1023e78564ba2be7e62f31b775efb
6 Nb1013b391af4437bab2a79f3c8472972
7 Ncd100cda2b834e42ae23d21e3c9c4bad
8 anzsrc-for:06
9 anzsrc-for:0605
10 schema:author N528b6c3064844329b3b324fc3c4428ec
11 schema:citation sg:pub.10.1007/978-1-4757-3264-1
12 sg:pub.10.1007/bf00994018
13 sg:pub.10.1007/s00726-007-0616-y
14 sg:pub.10.1023/a:1020696810938
15 sg:pub.10.1038/nprot.2007.131
16 sg:pub.10.1186/1471-2105-10-134
17 sg:pub.10.1186/1471-2105-6-33
18 sg:pub.10.1186/1471-2105-7-91
19 sg:pub.10.1186/1471-2105-8-463
20 sg:pub.10.1186/1471-2105-9-173
21 sg:pub.10.1186/1471-2105-9-201
22 sg:pub.10.1186/1471-2105-9-62
23 sg:pub.10.1186/1471-2105-9-9
24 sg:pub.10.1186/1471-2180-5-58
25 schema:datePublished 2011-01-14
26 schema:datePublishedReg 2011-01-14
27 schema:description BACKGROUND: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins. RESULTS: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search. CONCLUSIONS: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N8a7886d5db25462fb312adc65a70158f
32 Na58df41a3a7746f8b504a9b3b611e857
33 sg:journal.1023786
34 schema:keywords CV group
35 CV loop
36 Co/
37 Gaussian kernel function
38 Gram-positive bacteria
39 Gram-positive bacterial proteins
40 Most predictive methods
41 Nested k
42 SecretPV2.0
43 SecretomeP V2.0
44 Web
45 bacteria
46 bacterial proteins
47 best model
48 classifier
49 combination
50 different sequence transformation vectors
51 error
52 fact
53 feature vectors
54 feature-based classifier
55 final model
56 function
57 grid search
58 group
59 identification
60 implementation
61 independent set
62 inner CV loop
63 kernel function
64 linear
65 loop
66 machine
67 mechanism
68 method
69 model
70 model parameters
71 nclassgpositive/.
72 outer CV group
73 parameters
74 performance
75 polynomials
76 possible feature vectors
77 predictive methods
78 predictive performance
79 protein
80 protein secretion mechanisms
81 search
82 secreted proteins
83 secretion mechanism
84 sequence transformation vectors
85 sequence-based classifier
86 set
87 study
88 support vector machine
89 transformation vectors
90 v2.0
91 vector
92 vector machine
93 schema:name NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins
94 schema:pagination 21-21
95 schema:productId N682a68b500d74cd9911e3adca99c867c
96 N78652902db0f44828ce11d8ad84c7e26
97 Nb80b04861cda4aa0ae1eef08f13628e5
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052011094
99 https://doi.org/10.1186/1471-2105-12-21
100 schema:sdDatePublished 2021-11-01T18:17
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N58290bda42f94713b2c533a1e3cc0c1c
103 schema:url https://doi.org/10.1186/1471-2105-12-21
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N2556a441c2d949dab45514e0b1da23e7 rdf:first sg:person.011340230117.85
108 rdf:rest N995c5952b61c4637a8870a5fbad6e1a8
109 N320b89f682f24e448bf22bd268386a4f rdf:first sg:person.01212103625.50
110 rdf:rest Nd6837b7a256940009c898f657eb2c96d
111 N323ddd6de90c46808a994f9b8ad74db6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Artificial Intelligence
113 rdf:type schema:DefinedTerm
114 N528b6c3064844329b3b324fc3c4428ec rdf:first sg:person.0767765751.89
115 rdf:rest N320b89f682f24e448bf22bd268386a4f
116 N5300fbab8e5a4229987788971efabecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Gram-Positive Bacteria
118 rdf:type schema:DefinedTerm
119 N57b7e54d36c74f0f9a0e3540252a0a3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Bacterial Proteins
121 rdf:type schema:DefinedTerm
122 N58290bda42f94713b2c533a1e3cc0c1c schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N682a68b500d74cd9911e3adca99c867c schema:name dimensions_id
125 schema:value pub.1052011094
126 rdf:type schema:PropertyValue
127 N726977c453d04fd1a25c61bf1dc99bca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Computational Biology
129 rdf:type schema:DefinedTerm
130 N78652902db0f44828ce11d8ad84c7e26 schema:name pubmed_id
131 schema:value 21235786
132 rdf:type schema:PropertyValue
133 N8a7886d5db25462fb312adc65a70158f schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 N8cf1023e78564ba2be7e62f31b775efb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Software
137 rdf:type schema:DefinedTerm
138 N995c5952b61c4637a8870a5fbad6e1a8 rdf:first sg:person.013576664717.29
139 rdf:rest rdf:nil
140 Na58df41a3a7746f8b504a9b3b611e857 schema:volumeNumber 12
141 rdf:type schema:PublicationVolume
142 Nb1013b391af4437bab2a79f3c8472972 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Models, Theoretical
144 rdf:type schema:DefinedTerm
145 Nb80b04861cda4aa0ae1eef08f13628e5 schema:name doi
146 schema:value 10.1186/1471-2105-12-21
147 rdf:type schema:PropertyValue
148 Ncd100cda2b834e42ae23d21e3c9c4bad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Databases, Protein
150 rdf:type schema:DefinedTerm
151 Nd6837b7a256940009c898f657eb2c96d rdf:first sg:person.011066666273.24
152 rdf:rest N2556a441c2d949dab45514e0b1da23e7
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
157 schema:name Microbiology
158 rdf:type schema:DefinedTerm
159 sg:journal.1023786 schema:issn 1471-2105
160 schema:name BMC Bioinformatics
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.011066666273.24 schema:affiliation grid-institutes:grid.10689.36
164 schema:familyName Nino
165 schema:givenName Luis F
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066666273.24
167 rdf:type schema:Person
168 sg:person.011340230117.85 schema:affiliation grid-institutes:grid.418087.2
169 schema:familyName Patarroyo
170 schema:givenName Manuel E
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340230117.85
172 rdf:type schema:Person
173 sg:person.01212103625.50 schema:affiliation grid-institutes:grid.10689.36
174 schema:familyName Pino
175 schema:givenName Camilo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212103625.50
177 rdf:type schema:Person
178 sg:person.013576664717.29 schema:affiliation grid-institutes:grid.418087.2
179 schema:familyName Patarroyo
180 schema:givenName Manuel A
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576664717.29
182 rdf:type schema:Person
183 sg:person.0767765751.89 schema:affiliation grid-institutes:grid.418087.2
184 schema:familyName Restrepo-Montoya
185 schema:givenName Daniel
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767765751.89
187 rdf:type schema:Person
188 sg:pub.10.1007/978-1-4757-3264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028478311
189 https://doi.org/10.1007/978-1-4757-3264-1
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
192 https://doi.org/10.1007/bf00994018
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00726-007-0616-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014075029
195 https://doi.org/10.1007/s00726-007-0616-y
196 rdf:type schema:CreativeWork
197 sg:pub.10.1023/a:1020696810938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038649582
198 https://doi.org/10.1023/a:1020696810938
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nprot.2007.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037402439
201 https://doi.org/10.1038/nprot.2007.131
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2105-10-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053097004
204 https://doi.org/10.1186/1471-2105-10-134
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2105-6-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011067150
207 https://doi.org/10.1186/1471-2105-6-33
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/1471-2105-7-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034791610
210 https://doi.org/10.1186/1471-2105-7-91
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1471-2105-8-463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045475049
213 https://doi.org/10.1186/1471-2105-8-463
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/1471-2105-9-173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049528192
216 https://doi.org/10.1186/1471-2105-9-173
217 rdf:type schema:CreativeWork
218 sg:pub.10.1186/1471-2105-9-201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038400960
219 https://doi.org/10.1186/1471-2105-9-201
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/1471-2105-9-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029185104
222 https://doi.org/10.1186/1471-2105-9-62
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1471-2105-9-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024199982
225 https://doi.org/10.1186/1471-2105-9-9
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1471-2180-5-58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017810504
228 https://doi.org/10.1186/1471-2180-5-58
229 rdf:type schema:CreativeWork
230 grid-institutes:grid.10689.36 schema:alternateName Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá DC, Colombia
231 Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá DC, Colombia
232 schema:name Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá DC, Colombia
233 Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá DC, Colombia
234 rdf:type schema:Organization
235 grid-institutes:grid.418087.2 schema:alternateName Fundación Instituto de Inmunología de Colombia - FIDIC, Carrera 50 No. 26-20 Bogotá DC, Colombia
236 schema:name Fundación Instituto de Inmunología de Colombia - FIDIC, Carrera 50 No. 26-20 Bogotá DC, Colombia
237 Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá DC, Colombia
238 Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá DC, Colombia
239 School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia
240 School of Medicine, Universidad Nacional de Colombia, Bogotá DC, Colombia
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...