NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-14

AUTHORS

Daniel Restrepo-Montoya, Camilo Pino, Luis F Nino, Manuel E Patarroyo, Manuel A Patarroyo

ABSTRACT

BACKGROUND: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins. RESULTS: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search. CONCLUSIONS: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/. More... »

PAGES

21-21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-21

DOI

http://dx.doi.org/10.1186/1471-2105-12-21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052011094

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21235786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gram-Positive Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.418087.2", 
          "name": [
            "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia", 
            "Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia", 
            "School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogot\u00e1 DC, Colombia", 
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Restrepo-Montoya", 
        "givenName": "Daniel", 
        "id": "sg:person.0767765751.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767765751.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pino", 
        "givenName": "Camilo", 
        "id": "sg:person.01212103625.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212103625.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogot\u00e1 DC, Colombia", 
            "Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nino", 
        "givenName": "Luis F", 
        "id": "sg:person.011066666273.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066666273.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.418087.2", 
          "name": [
            "School of Medicine, Universidad Nacional de Colombia, Bogot\u00e1 DC, Colombia", 
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarroyo", 
        "givenName": "Manuel E", 
        "id": "sg:person.011340230117.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340230117.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.418087.2", 
          "name": [
            "School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogot\u00e1 DC, Colombia", 
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia - FIDIC, Carrera 50 No. 26-20 Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarroyo", 
        "givenName": "Manuel A", 
        "id": "sg:person.013576664717.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576664717.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-9-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024199982", 
          "https://doi.org/10.1186/1471-2105-9-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045475049", 
          "https://doi.org/10.1186/1471-2105-8-463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034791610", 
          "https://doi.org/10.1186/1471-2105-7-91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053097004", 
          "https://doi.org/10.1186/1471-2105-10-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020696810938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038649582", 
          "https://doi.org/10.1023/a:1020696810938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028478311", 
          "https://doi.org/10.1007/978-1-4757-3264-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011067150", 
          "https://doi.org/10.1186/1471-2105-6-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-007-0616-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014075029", 
          "https://doi.org/10.1007/s00726-007-0616-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049528192", 
          "https://doi.org/10.1186/1471-2105-9-173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-5-58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017810504", 
          "https://doi.org/10.1186/1471-2180-5-58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038400960", 
          "https://doi.org/10.1186/1471-2105-9-201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037402439", 
          "https://doi.org/10.1038/nprot.2007.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029185104", 
          "https://doi.org/10.1186/1471-2105-9-62"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01-14", 
    "datePublishedReg": "2011-01-14", 
    "description": "BACKGROUND: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins.\nRESULTS: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search.\nCONCLUSIONS: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-12-21", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "support vector machine", 
      "kernel function", 
      "possible feature vectors", 
      "feature-based classifier", 
      "Gaussian kernel function", 
      "feature vectors", 
      "vector machine", 
      "grid search", 
      "sequence-based classifier", 
      "classifier", 
      "Gram-positive bacterial proteins", 
      "predictive performance", 
      "independent set", 
      "machine", 
      "predictive methods", 
      "Web", 
      "best model", 
      "implementation", 
      "model parameters", 
      "vector", 
      "model", 
      "set", 
      "v2.0", 
      "search", 
      "performance", 
      "method", 
      "error", 
      "final model", 
      "identification", 
      "bacterial proteins", 
      "parameters", 
      "protein secretion mechanisms", 
      "polynomials", 
      "function", 
      "fact", 
      "loop", 
      "secreted proteins", 
      "Gram-positive bacteria", 
      "transformation vectors", 
      "secretion mechanism", 
      "combination", 
      "protein", 
      "linear", 
      "mechanism", 
      "bacteria", 
      "study", 
      "group", 
      "CV group", 
      "Co/", 
      "CV loop", 
      "Most predictive methods", 
      "different sequence transformation vectors", 
      "sequence transformation vectors", 
      "Nested k", 
      "inner CV loop", 
      "outer CV group", 
      "SecretomeP V2.0", 
      "SecretPV2.0", 
      "nclassgpositive/."
    ], 
    "name": "NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins", 
    "pagination": "21-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052011094"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-21"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21235786"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-21", 
      "https://app.dimensions.ai/details/publication/pub.1052011094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_555.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-12-21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-21'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      22 PREDICATES      106 URIs      84 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-21 schema:about N303fe475a8a2401d8d6b0eb957fadd9d
2 N45a13b533bb64882a34bf1944498dc67
3 N85debbe360f5407895756183052fbde0
4 N87618b9553344af9a4c6768cd620b2a8
5 N8cd3ef77a9614349869651838fe1c955
6 N8eddf19d6ed541e59c44a4759c8236d5
7 Nea4a8b7c1b84426b9440c70c0201d135
8 anzsrc-for:06
9 anzsrc-for:0605
10 schema:author N0a1ce1f25c4c4144a6183b60445956b6
11 schema:citation sg:pub.10.1007/978-1-4757-3264-1
12 sg:pub.10.1007/bf00994018
13 sg:pub.10.1007/s00726-007-0616-y
14 sg:pub.10.1023/a:1020696810938
15 sg:pub.10.1038/nprot.2007.131
16 sg:pub.10.1186/1471-2105-10-134
17 sg:pub.10.1186/1471-2105-6-33
18 sg:pub.10.1186/1471-2105-7-91
19 sg:pub.10.1186/1471-2105-8-463
20 sg:pub.10.1186/1471-2105-9-173
21 sg:pub.10.1186/1471-2105-9-201
22 sg:pub.10.1186/1471-2105-9-62
23 sg:pub.10.1186/1471-2105-9-9
24 sg:pub.10.1186/1471-2180-5-58
25 schema:datePublished 2011-01-14
26 schema:datePublishedReg 2011-01-14
27 schema:description BACKGROUND: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins. RESULTS: Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search. CONCLUSIONS: The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N81ccb057161746eca402bdae74324892
32 N829ef56b7333416db94e96f93eee67e7
33 sg:journal.1023786
34 schema:keywords CV group
35 CV loop
36 Co/
37 Gaussian kernel function
38 Gram-positive bacteria
39 Gram-positive bacterial proteins
40 Most predictive methods
41 Nested k
42 SecretPV2.0
43 SecretomeP V2.0
44 Web
45 bacteria
46 bacterial proteins
47 best model
48 classifier
49 combination
50 different sequence transformation vectors
51 error
52 fact
53 feature vectors
54 feature-based classifier
55 final model
56 function
57 grid search
58 group
59 identification
60 implementation
61 independent set
62 inner CV loop
63 kernel function
64 linear
65 loop
66 machine
67 mechanism
68 method
69 model
70 model parameters
71 nclassgpositive/.
72 outer CV group
73 parameters
74 performance
75 polynomials
76 possible feature vectors
77 predictive methods
78 predictive performance
79 protein
80 protein secretion mechanisms
81 search
82 secreted proteins
83 secretion mechanism
84 sequence transformation vectors
85 sequence-based classifier
86 set
87 study
88 support vector machine
89 transformation vectors
90 v2.0
91 vector
92 vector machine
93 schema:name NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins
94 schema:pagination 21-21
95 schema:productId N51fea222278e4bbfa370ed6235a5053f
96 Na9da5bc5970c46b1837a6d4532859533
97 Nf61af3f748a6481c8c98dfa4e188be22
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052011094
99 https://doi.org/10.1186/1471-2105-12-21
100 schema:sdDatePublished 2022-01-01T18:26
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N5a51ad79d29a4a3cabb8a1dde8a29b0a
103 schema:url https://doi.org/10.1186/1471-2105-12-21
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N0a1ce1f25c4c4144a6183b60445956b6 rdf:first sg:person.0767765751.89
108 rdf:rest N523cea3b86fb4e80a61025f7dd7c2df6
109 N303fe475a8a2401d8d6b0eb957fadd9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Computational Biology
111 rdf:type schema:DefinedTerm
112 N45a13b533bb64882a34bf1944498dc67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Models, Theoretical
114 rdf:type schema:DefinedTerm
115 N51fea222278e4bbfa370ed6235a5053f schema:name doi
116 schema:value 10.1186/1471-2105-12-21
117 rdf:type schema:PropertyValue
118 N523cea3b86fb4e80a61025f7dd7c2df6 rdf:first sg:person.01212103625.50
119 rdf:rest Nd6e5afe33f0743d1b8b86ffccb7b1e15
120 N5a51ad79d29a4a3cabb8a1dde8a29b0a schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N81ccb057161746eca402bdae74324892 schema:volumeNumber 12
123 rdf:type schema:PublicationVolume
124 N829ef56b7333416db94e96f93eee67e7 schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 N85debbe360f5407895756183052fbde0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Bacterial Proteins
128 rdf:type schema:DefinedTerm
129 N87618b9553344af9a4c6768cd620b2a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Databases, Protein
131 rdf:type schema:DefinedTerm
132 N8cd3ef77a9614349869651838fe1c955 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Artificial Intelligence
134 rdf:type schema:DefinedTerm
135 N8eddf19d6ed541e59c44a4759c8236d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Gram-Positive Bacteria
137 rdf:type schema:DefinedTerm
138 Na9da5bc5970c46b1837a6d4532859533 schema:name dimensions_id
139 schema:value pub.1052011094
140 rdf:type schema:PropertyValue
141 Nd6e5afe33f0743d1b8b86ffccb7b1e15 rdf:first sg:person.011066666273.24
142 rdf:rest Nffacbafc68b740b4ab2ec3538bb02bf1
143 Ne46550dc3f5648d3950beebddaeebb5c rdf:first sg:person.013576664717.29
144 rdf:rest rdf:nil
145 Nea4a8b7c1b84426b9440c70c0201d135 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Software
147 rdf:type schema:DefinedTerm
148 Nf61af3f748a6481c8c98dfa4e188be22 schema:name pubmed_id
149 schema:value 21235786
150 rdf:type schema:PropertyValue
151 Nffacbafc68b740b4ab2ec3538bb02bf1 rdf:first sg:person.011340230117.85
152 rdf:rest Ne46550dc3f5648d3950beebddaeebb5c
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
157 schema:name Microbiology
158 rdf:type schema:DefinedTerm
159 sg:journal.1023786 schema:issn 1471-2105
160 schema:name BMC Bioinformatics
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.011066666273.24 schema:affiliation grid-institutes:grid.10689.36
164 schema:familyName Nino
165 schema:givenName Luis F
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066666273.24
167 rdf:type schema:Person
168 sg:person.011340230117.85 schema:affiliation grid-institutes:grid.418087.2
169 schema:familyName Patarroyo
170 schema:givenName Manuel E
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340230117.85
172 rdf:type schema:Person
173 sg:person.01212103625.50 schema:affiliation grid-institutes:grid.10689.36
174 schema:familyName Pino
175 schema:givenName Camilo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212103625.50
177 rdf:type schema:Person
178 sg:person.013576664717.29 schema:affiliation grid-institutes:grid.418087.2
179 schema:familyName Patarroyo
180 schema:givenName Manuel A
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576664717.29
182 rdf:type schema:Person
183 sg:person.0767765751.89 schema:affiliation grid-institutes:grid.418087.2
184 schema:familyName Restrepo-Montoya
185 schema:givenName Daniel
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767765751.89
187 rdf:type schema:Person
188 sg:pub.10.1007/978-1-4757-3264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028478311
189 https://doi.org/10.1007/978-1-4757-3264-1
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
192 https://doi.org/10.1007/bf00994018
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00726-007-0616-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014075029
195 https://doi.org/10.1007/s00726-007-0616-y
196 rdf:type schema:CreativeWork
197 sg:pub.10.1023/a:1020696810938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038649582
198 https://doi.org/10.1023/a:1020696810938
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nprot.2007.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037402439
201 https://doi.org/10.1038/nprot.2007.131
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2105-10-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053097004
204 https://doi.org/10.1186/1471-2105-10-134
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2105-6-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011067150
207 https://doi.org/10.1186/1471-2105-6-33
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/1471-2105-7-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034791610
210 https://doi.org/10.1186/1471-2105-7-91
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1471-2105-8-463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045475049
213 https://doi.org/10.1186/1471-2105-8-463
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/1471-2105-9-173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049528192
216 https://doi.org/10.1186/1471-2105-9-173
217 rdf:type schema:CreativeWork
218 sg:pub.10.1186/1471-2105-9-201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038400960
219 https://doi.org/10.1186/1471-2105-9-201
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/1471-2105-9-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029185104
222 https://doi.org/10.1186/1471-2105-9-62
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1471-2105-9-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024199982
225 https://doi.org/10.1186/1471-2105-9-9
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1471-2180-5-58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017810504
228 https://doi.org/10.1186/1471-2180-5-58
229 rdf:type schema:CreativeWork
230 grid-institutes:grid.10689.36 schema:alternateName Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá DC, Colombia
231 Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá DC, Colombia
232 schema:name Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá DC, Colombia
233 Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá DC, Colombia
234 rdf:type schema:Organization
235 grid-institutes:grid.418087.2 schema:alternateName Fundación Instituto de Inmunología de Colombia - FIDIC, Carrera 50 No. 26-20 Bogotá DC, Colombia
236 schema:name Fundación Instituto de Inmunología de Colombia - FIDIC, Carrera 50 No. 26-20 Bogotá DC, Colombia
237 Intelligent Systems Research Laboratory - LISI, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá DC, Colombia
238 Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá DC, Colombia
239 School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia
240 School of Medicine, Universidad Nacional de Colombia, Bogotá DC, Colombia
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...