MINE: Module Identification in Networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-23

AUTHORS

Kahn Rhrissorrakrai, Kristin C Gunsalus

ABSTRACT

BackgroundGraphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks.ResultsMINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties.ConclusionsMINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. More... »

PAGES

4581

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-192

DOI

http://dx.doi.org/10.1186/1471-2105-12-192

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037399946

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21605434


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, 10003, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rhrissorrakrai", 
        "givenName": "Kahn", 
        "id": "sg:person.01277770622.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277770622.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, 10003, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gunsalus", 
        "givenName": "Kristin C", 
        "id": "sg:person.01145463764.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145463764.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011649705", 
          "https://doi.org/10.1038/nature02555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013256259", 
          "https://doi.org/10.1186/1471-2105-4-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049564858", 
          "https://doi.org/10.1038/nmeth.1279"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-23", 
    "datePublishedReg": "2011-05-23", 
    "description": "BackgroundGraphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks.ResultsMINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties.ConclusionsMINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-12-192", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2520194", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2527058", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "biological networks", 
      "adjustable parameters", 
      "topological properties", 
      "agglomerative clustering method", 
      "better overall recall", 
      "related algorithms", 
      "input network", 
      "clustering method", 
      "algorithm", 
      "module identification", 
      "cluster results", 
      "geometric accuracy", 
      "molecular interaction networks", 
      "high modularity", 
      "network", 
      "parameters", 
      "interaction networks", 
      "high quality modules", 
      "small number", 
      "modular set", 
      "problem", 
      "clusters", 
      "dense network", 
      "modularity", 
      "interaction data", 
      "set", 
      "accuracy", 
      "network association", 
      "model", 
      "module", 
      "overall recall", 
      "association data", 
      "important challenge", 
      "properties", 
      "protein-protein interaction network", 
      "results", 
      "quality module", 
      "multiple types", 
      "SPICi", 
      "gene products", 
      "density", 
      "number", 
      "top clusters", 
      "users", 
      "granularity", 
      "data", 
      "tool", 
      "high density", 
      "flexibility", 
      "annotation", 
      "challenges", 
      "related gene products", 
      "comparison", 
      "precision", 
      "CFinder", 
      "functional annotation", 
      "C. elegans", 
      "functional categories", 
      "high degree", 
      "degree", 
      "S. cerevisiae", 
      "recall", 
      "types", 
      "single unit", 
      "NEMO", 
      "MCODE", 
      "mine", 
      "identification", 
      "products", 
      "units", 
      "method", 
      "elegans", 
      "categories", 
      "cerevisiae", 
      "high levels", 
      "response", 
      "levels", 
      "group", 
      "MCL", 
      "association"
    ], 
    "name": "MINE: Module Identification in Networks", 
    "pagination": "4581", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037399946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-192"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21605434"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-192", 
      "https://app.dimensions.ai/details/publication/pub.1037399946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-12-192"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-192'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-192'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-192'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-192'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      116 URIs      103 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-192 schema:about N1e008d760941436280f6f23451831b30
2 N210670aa8d6d4db48cd3a0be357ea026
3 N538ca2a5da2d49ac972c655523bc1bc9
4 Na1d9a0fe041a48f0be4f529a2cc7316f
5 Nb17a50a584cf4a66bdec753fb500786b
6 Ndd73e4e4d0534c76a0255d26472a1070
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N00453366d78a4057bf780690744d6912
10 schema:citation sg:pub.10.1038/30918
11 sg:pub.10.1038/75556
12 sg:pub.10.1038/nature02555
13 sg:pub.10.1038/nmeth.1279
14 sg:pub.10.1186/1471-2105-4-2
15 schema:datePublished 2011-05-23
16 schema:datePublishedReg 2011-05-23
17 schema:description BackgroundGraphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks.ResultsMINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties.ConclusionsMINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N31baf9faea3d423f86ae53b46fc737de
21 N73f2ce2b9ebd4c9cba5e7f24327cd0c6
22 sg:journal.1023786
23 schema:keywords C. elegans
24 CFinder
25 MCL
26 MCODE
27 NEMO
28 S. cerevisiae
29 SPICi
30 accuracy
31 adjustable parameters
32 agglomerative clustering method
33 algorithm
34 annotation
35 association
36 association data
37 better overall recall
38 biological networks
39 categories
40 cerevisiae
41 challenges
42 cluster results
43 clustering method
44 clusters
45 comparison
46 data
47 degree
48 dense network
49 density
50 elegans
51 flexibility
52 functional annotation
53 functional categories
54 gene products
55 geometric accuracy
56 granularity
57 group
58 high degree
59 high density
60 high levels
61 high modularity
62 high quality modules
63 identification
64 important challenge
65 input network
66 interaction data
67 interaction networks
68 levels
69 method
70 mine
71 model
72 modular set
73 modularity
74 module
75 module identification
76 molecular interaction networks
77 multiple types
78 network
79 network association
80 number
81 overall recall
82 parameters
83 precision
84 problem
85 products
86 properties
87 protein-protein interaction network
88 quality module
89 recall
90 related algorithms
91 related gene products
92 response
93 results
94 set
95 single unit
96 small number
97 tool
98 top clusters
99 topological properties
100 types
101 units
102 users
103 schema:name MINE: Module Identification in Networks
104 schema:pagination 4581
105 schema:productId N16c1c0b05aca48649b963dc4c245ccef
106 N7a517c74c4c744d8b6085841a035a94a
107 N8a3a115c9a0c41f9a9b2bc67c03fd35e
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037399946
109 https://doi.org/10.1186/1471-2105-12-192
110 schema:sdDatePublished 2022-10-01T06:37
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N45106f373a5646ceacc6e081ca0c7050
113 schema:url https://doi.org/10.1186/1471-2105-12-192
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N00453366d78a4057bf780690744d6912 rdf:first sg:person.01277770622.27
118 rdf:rest N0f5a62cf1803454091735fb9a5e99eba
119 N0f5a62cf1803454091735fb9a5e99eba rdf:first sg:person.01145463764.89
120 rdf:rest rdf:nil
121 N16c1c0b05aca48649b963dc4c245ccef schema:name pubmed_id
122 schema:value 21605434
123 rdf:type schema:PropertyValue
124 N1e008d760941436280f6f23451831b30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Proteins
126 rdf:type schema:DefinedTerm
127 N210670aa8d6d4db48cd3a0be357ea026 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Animals
129 rdf:type schema:DefinedTerm
130 N31baf9faea3d423f86ae53b46fc737de schema:volumeNumber 12
131 rdf:type schema:PublicationVolume
132 N45106f373a5646ceacc6e081ca0c7050 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N538ca2a5da2d49ac972c655523bc1bc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Caenorhabditis elegans
136 rdf:type schema:DefinedTerm
137 N73f2ce2b9ebd4c9cba5e7f24327cd0c6 schema:issueNumber 1
138 rdf:type schema:PublicationIssue
139 N7a517c74c4c744d8b6085841a035a94a schema:name dimensions_id
140 schema:value pub.1037399946
141 rdf:type schema:PropertyValue
142 N8a3a115c9a0c41f9a9b2bc67c03fd35e schema:name doi
143 schema:value 10.1186/1471-2105-12-192
144 rdf:type schema:PropertyValue
145 Na1d9a0fe041a48f0be4f529a2cc7316f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Saccharomyces cerevisiae
147 rdf:type schema:DefinedTerm
148 Nb17a50a584cf4a66bdec753fb500786b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Cluster Analysis
150 rdf:type schema:DefinedTerm
151 Ndd73e4e4d0534c76a0255d26472a1070 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Algorithms
153 rdf:type schema:DefinedTerm
154 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
155 schema:name Biological Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
158 schema:name Genetics
159 rdf:type schema:DefinedTerm
160 sg:grant.2520194 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-192
161 rdf:type schema:MonetaryGrant
162 sg:grant.2527058 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-192
163 rdf:type schema:MonetaryGrant
164 sg:journal.1023786 schema:issn 1471-2105
165 schema:name BMC Bioinformatics
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01145463764.89 schema:affiliation grid-institutes:grid.137628.9
169 schema:familyName Gunsalus
170 schema:givenName Kristin C
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145463764.89
172 rdf:type schema:Person
173 sg:person.01277770622.27 schema:affiliation grid-institutes:grid.137628.9
174 schema:familyName Rhrissorrakrai
175 schema:givenName Kahn
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277770622.27
177 rdf:type schema:Person
178 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
179 https://doi.org/10.1038/30918
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
182 https://doi.org/10.1038/75556
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature02555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011649705
185 https://doi.org/10.1038/nature02555
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nmeth.1279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049564858
188 https://doi.org/10.1038/nmeth.1279
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2105-4-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013256259
191 https://doi.org/10.1186/1471-2105-4-2
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.137628.9 schema:alternateName Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, 10003, New York, NY, USA
194 schema:name Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, 10003, New York, NY, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...