More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-17

AUTHORS

Jakub Truszkowski, Daniel G Brown

ABSTRACT

BackgroundIdentifying recombinations in HIV is important for studying the epidemiology of the virus and aids in the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi algorithm in a hidden Markov model to model recombinant sequences.ResultsWe apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz.ConclusionsBy explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding approach in HMMs. More... »

PAGES

168

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-168

DOI

http://dx.doi.org/10.1186/1471-2105-12-168

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053076981

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21586147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HIV-1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombination, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Truszkowski", 
        "givenName": "Jakub", 
        "id": "sg:person.01320220640.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320220640.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Daniel G", 
        "id": "sg:person.0642727740.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00774-011-0273-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170507", 
          "https://doi.org/10.1007/s00774-011-0273-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000399524", 
          "https://doi.org/10.1007/978-3-540-30219-3_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-s1-s40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052005567", 
          "https://doi.org/10.1186/1471-2105-11-s1-s40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10463-009-0259-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035572386", 
          "https://doi.org/10.1007/s10463-009-0259-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045264325", 
          "https://doi.org/10.1186/1471-2105-7-265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13509-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016820320", 
          "https://doi.org/10.1007/978-3-642-13509-5_16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-17", 
    "datePublishedReg": "2011-05-17", 
    "description": "BackgroundIdentifying recombinations in HIV is important for studying the epidemiology of the virus and aids in the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi algorithm in a hidden Markov model to model recombinant sequences.ResultsWe apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz.ConclusionsBy explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding approach in HMMs.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-12-168", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "HIV-1", 
      "potential vaccines", 
      "different subtypes", 
      "HIV", 
      "vaccine", 
      "epidemiology", 
      "breakpoints", 
      "subtypes", 
      "ResultsWe", 
      "virus", 
      "treatment", 
      "recombination breakpoints", 
      "breakpoint positions", 
      "recombinant sequences", 
      "tolerance", 
      "ConclusionsBy", 
      "use", 
      "sites", 
      "aid", 
      "Markov model", 
      "tool", 
      "location", 
      "sequence regions", 
      "region", 
      "certain error tolerance", 
      "model", 
      "approach", 
      "task", 
      "sequence", 
      "decoding algorithm", 
      "position", 
      "prediction", 
      "domain", 
      "design", 
      "error tolerance", 
      "new algorithm", 
      "implementation", 
      "decoding approach", 
      "algorithm", 
      "accuracy", 
      "reliable prediction", 
      "new decoding algorithm", 
      "prediction accuracy", 
      "Viterbi algorithm", 
      "new decoding approach", 
      "HMM", 
      "recombination", 
      "uncertainty", 
      "new domain", 
      "robust decoding algorithm"
    ], 
    "name": "More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs", 
    "pagination": "168", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053076981"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-168"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21586147"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-168", 
      "https://app.dimensions.ai/details/publication/pub.1053076981"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_542.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-12-168"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      88 URIs      73 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-168 schema:about N282fd7ff83214018843289771f29162f
2 N48fdd8c98d7748cfa09ace78614396a1
3 N4fad2797515e4a78bf9e75b45c79b9c2
4 N5e32d6c9d0df4a119420799c024abe6b
5 Nbbb7524b9ba74ca6a29cdeb40f9bc61c
6 Nc522f4bccfa94e368e4dc3db4e69ccb0
7 anzsrc-for:01
8 anzsrc-for:06
9 anzsrc-for:08
10 schema:author Na957ba7fc2874af7b51cad89b49fe5d2
11 schema:citation sg:pub.10.1007/978-3-540-30219-3_36
12 sg:pub.10.1007/978-3-642-13509-5_16
13 sg:pub.10.1007/s00774-011-0273-9
14 sg:pub.10.1007/s10463-009-0259-8
15 sg:pub.10.1186/1471-2105-11-s1-s40
16 sg:pub.10.1186/1471-2105-7-265
17 schema:datePublished 2011-05-17
18 schema:datePublishedReg 2011-05-17
19 schema:description BackgroundIdentifying recombinations in HIV is important for studying the epidemiology of the virus and aids in the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi algorithm in a hidden Markov model to model recombinant sequences.ResultsWe apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz.ConclusionsBy explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding approach in HMMs.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N1769a073624c43608cfe210210579b88
23 Ncff2973860f24e028573866bcf32ed29
24 sg:journal.1023786
25 schema:keywords ConclusionsBy
26 HIV
27 HIV-1
28 HMM
29 Markov model
30 ResultsWe
31 Viterbi algorithm
32 accuracy
33 aid
34 algorithm
35 approach
36 breakpoint positions
37 breakpoints
38 certain error tolerance
39 decoding algorithm
40 decoding approach
41 design
42 different subtypes
43 domain
44 epidemiology
45 error tolerance
46 implementation
47 location
48 model
49 new algorithm
50 new decoding algorithm
51 new decoding approach
52 new domain
53 position
54 potential vaccines
55 prediction
56 prediction accuracy
57 recombinant sequences
58 recombination
59 recombination breakpoints
60 region
61 reliable prediction
62 robust decoding algorithm
63 sequence
64 sequence regions
65 sites
66 subtypes
67 task
68 tolerance
69 tool
70 treatment
71 uncertainty
72 use
73 vaccine
74 virus
75 schema:name More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs
76 schema:pagination 168
77 schema:productId N1f2b62cf6c024d41ae354caab361b436
78 N8c62550b1ce74281a944894d144112a6
79 Nf0c624310abc4256835412a69d7966b9
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053076981
81 https://doi.org/10.1186/1471-2105-12-168
82 schema:sdDatePublished 2022-12-01T06:29
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nd3f3c98baae04ef8af67afc9e27d1a1a
85 schema:url https://doi.org/10.1186/1471-2105-12-168
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N1769a073624c43608cfe210210579b88 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N1f2b62cf6c024d41ae354caab361b436 schema:name dimensions_id
92 schema:value pub.1053076981
93 rdf:type schema:PropertyValue
94 N282fd7ff83214018843289771f29162f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Recombination, Genetic
96 rdf:type schema:DefinedTerm
97 N3eedeeedabdf4a4989fdac8d19bde981 rdf:first sg:person.0642727740.54
98 rdf:rest rdf:nil
99 N48fdd8c98d7748cfa09ace78614396a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Markov Chains
101 rdf:type schema:DefinedTerm
102 N4fad2797515e4a78bf9e75b45c79b9c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Algorithms
104 rdf:type schema:DefinedTerm
105 N5e32d6c9d0df4a119420799c024abe6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name HIV-1
107 rdf:type schema:DefinedTerm
108 N8c62550b1ce74281a944894d144112a6 schema:name pubmed_id
109 schema:value 21586147
110 rdf:type schema:PropertyValue
111 Na957ba7fc2874af7b51cad89b49fe5d2 rdf:first sg:person.01320220640.40
112 rdf:rest N3eedeeedabdf4a4989fdac8d19bde981
113 Nbbb7524b9ba74ca6a29cdeb40f9bc61c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Humans
115 rdf:type schema:DefinedTerm
116 Nc522f4bccfa94e368e4dc3db4e69ccb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Genome, Viral
118 rdf:type schema:DefinedTerm
119 Ncff2973860f24e028573866bcf32ed29 schema:volumeNumber 12
120 rdf:type schema:PublicationVolume
121 Nd3f3c98baae04ef8af67afc9e27d1a1a schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nf0c624310abc4256835412a69d7966b9 schema:name doi
124 schema:value 10.1186/1471-2105-12-168
125 rdf:type schema:PropertyValue
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
133 schema:name Information and Computing Sciences
134 rdf:type schema:DefinedTerm
135 sg:journal.1023786 schema:issn 1471-2105
136 schema:name BMC Bioinformatics
137 schema:publisher Springer Nature
138 rdf:type schema:Periodical
139 sg:person.01320220640.40 schema:affiliation grid-institutes:grid.46078.3d
140 schema:familyName Truszkowski
141 schema:givenName Jakub
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320220640.40
143 rdf:type schema:Person
144 sg:person.0642727740.54 schema:affiliation grid-institutes:grid.46078.3d
145 schema:familyName Brown
146 schema:givenName Daniel G
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54
148 rdf:type schema:Person
149 sg:pub.10.1007/978-3-540-30219-3_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000399524
150 https://doi.org/10.1007/978-3-540-30219-3_36
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-642-13509-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016820320
153 https://doi.org/10.1007/978-3-642-13509-5_16
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00774-011-0273-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170507
156 https://doi.org/10.1007/s00774-011-0273-9
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10463-009-0259-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035572386
159 https://doi.org/10.1007/s10463-009-0259-8
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2105-11-s1-s40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052005567
162 https://doi.org/10.1186/1471-2105-11-s1-s40
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-7-265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045264325
165 https://doi.org/10.1186/1471-2105-7-265
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.46078.3d schema:alternateName David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
168 schema:name David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...