More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Jakub Truszkowski, Daniel G Brown

ABSTRACT

BACKGROUND: Identifying recombinations in HIV is important for studying the epidemiology of the virus and aids in the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi algorithm in a hidden Markov model to model recombinant sequences. RESULTS: We apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz. CONCLUSIONS: By explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding approach in HMMs. More... »

PAGES

168

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-168

DOI

http://dx.doi.org/10.1186/1471-2105-12-168

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053076981

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21586147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HIV-1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombination, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Truszkowski", 
        "givenName": "Jakub", 
        "id": "sg:person.01320220640.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320220640.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Daniel G", 
        "id": "sg:person.0642727740.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000399524", 
          "https://doi.org/10.1007/978-3-540-30219-3_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000399524", 
          "https://doi.org/10.1007/978-3-540-30219-3_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003376662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005222175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006716029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012991796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014110611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13509-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016820320", 
          "https://doi.org/10.1007/978-3-642-13509-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13509-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016820320", 
          "https://doi.org/10.1007/978-3-642-13509-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002030-200210180-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030723780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002030-200210180-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030723780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032867388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034588758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10463-009-0259-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035572386", 
          "https://doi.org/10.1007/s10463-009-0259-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10463-009-0259-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035572386", 
          "https://doi.org/10.1007/s10463-009-0259-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036965307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036965307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039458980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00774-011-0273-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170507", 
          "https://doi.org/10.1007/s00774-011-0273-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041599581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042979967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045264325", 
          "https://doi.org/10.1186/1471-2105-7-265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045264325", 
          "https://doi.org/10.1186/1471-2105-7-265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(02)00343-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046533928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-s1-s40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052005567", 
          "https://doi.org/10.1186/1471-2105-11-s1-s40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701752236214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/aid.2008.0064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059225664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5463.55d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083359354", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Identifying recombinations in HIV is important for studying the epidemiology of the virus and aids in the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi algorithm in a hidden Markov model to model recombinant sequences.\nRESULTS: We apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz.\nCONCLUSIONS: By explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding approach in HMMs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-12-168", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs", 
    "pagination": "168", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcd16966aab797cfbcf8c59608666a82919e23b72aef3979d34e9b9203e74c66"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21586147"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-168"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053076981"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-168", 
      "https://app.dimensions.ai/details/publication/pub.1053076981"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-12-168"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-168'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      59 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-168 schema:about N486644cd8e8140a29feb8be44245880b
2 N62ef2818d5d04891ae604656a7a4d13c
3 N8814c1acca754a58966c6a71b0776a2c
4 Nac4bcd21933145199d10d213a9446a39
5 Nc2be7777cb154a06be71e5f2b77e529d
6 Nc7eeecd7db6a418691d121b34050b348
7 anzsrc-for:11
8 anzsrc-for:1108
9 schema:author Ne2f112ee48fb455fbd9df07103297248
10 schema:citation sg:pub.10.1007/978-3-540-30219-3_36
11 sg:pub.10.1007/978-3-642-13509-5_16
12 sg:pub.10.1007/s00774-011-0273-9
13 sg:pub.10.1007/s10463-009-0259-8
14 sg:pub.10.1186/1471-2105-11-s1-s40
15 sg:pub.10.1186/1471-2105-7-265
16 https://app.dimensions.ai/details/publication/pub.1083359354
17 https://doi.org/10.1016/s1473-3099(02)00343-2
18 https://doi.org/10.1089/106652701752236214
19 https://doi.org/10.1089/aid.2008.0064
20 https://doi.org/10.1093/bioinformatics/14.9.755
21 https://doi.org/10.1093/bioinformatics/btg1057
22 https://doi.org/10.1093/bioinformatics/bti459
23 https://doi.org/10.1093/bioinformatics/bti607
24 https://doi.org/10.1093/bioinformatics/btl474
25 https://doi.org/10.1093/bioinformatics/btl613
26 https://doi.org/10.1093/bioinformatics/btn607
27 https://doi.org/10.1093/nar/gkf436
28 https://doi.org/10.1093/nar/gkl200
29 https://doi.org/10.1093/nar/gkp371
30 https://doi.org/10.1097/00002030-200210180-00011
31 https://doi.org/10.1126/science.288.5463.55d
32 https://doi.org/10.1371/journal.pcbi.1000318
33 https://doi.org/10.2202/1544-6115.1238
34 schema:datePublished 2011-12
35 schema:datePublishedReg 2011-12-01
36 schema:description BACKGROUND: Identifying recombinations in HIV is important for studying the epidemiology of the virus and aids in the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi algorithm in a hidden Markov model to model recombinant sequences. RESULTS: We apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz. CONCLUSIONS: By explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding approach in HMMs.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N2a14bd8cf4d54878a67b8e5d04157116
41 Nb372e1e5649740388e8fd2186943b4cc
42 sg:journal.1023786
43 schema:name More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs
44 schema:pagination 168
45 schema:productId N45d5ed1a6fe348ecb37d342af4782f42
46 N465eaa1494ad4eefa9f13e4f8e3420bc
47 N8972c2d818584d6ba5fb5402856d4b92
48 Nd1415addf721402383d330d356b53718
49 Ndc6d74181315441695dd50f07963d988
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053076981
51 https://doi.org/10.1186/1471-2105-12-168
52 schema:sdDatePublished 2019-04-10T15:00
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Na7716b370796447690fad5b1db50c82f
55 schema:url http://link.springer.com/10.1186/1471-2105-12-168
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N2a14bd8cf4d54878a67b8e5d04157116 schema:volumeNumber 12
60 rdf:type schema:PublicationVolume
61 N45d5ed1a6fe348ecb37d342af4782f42 schema:name readcube_id
62 schema:value fcd16966aab797cfbcf8c59608666a82919e23b72aef3979d34e9b9203e74c66
63 rdf:type schema:PropertyValue
64 N465eaa1494ad4eefa9f13e4f8e3420bc schema:name pubmed_id
65 schema:value 21586147
66 rdf:type schema:PropertyValue
67 N486644cd8e8140a29feb8be44245880b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Humans
69 rdf:type schema:DefinedTerm
70 N62ef2818d5d04891ae604656a7a4d13c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Recombination, Genetic
72 rdf:type schema:DefinedTerm
73 N63fa2aa565004aa18d90ade10a5ac3b5 rdf:first sg:person.0642727740.54
74 rdf:rest rdf:nil
75 N8814c1acca754a58966c6a71b0776a2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name HIV-1
77 rdf:type schema:DefinedTerm
78 N8972c2d818584d6ba5fb5402856d4b92 schema:name doi
79 schema:value 10.1186/1471-2105-12-168
80 rdf:type schema:PropertyValue
81 Na7716b370796447690fad5b1db50c82f schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nac4bcd21933145199d10d213a9446a39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Markov Chains
85 rdf:type schema:DefinedTerm
86 Nb372e1e5649740388e8fd2186943b4cc schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Nc2be7777cb154a06be71e5f2b77e529d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Genome, Viral
90 rdf:type schema:DefinedTerm
91 Nc7eeecd7db6a418691d121b34050b348 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Algorithms
93 rdf:type schema:DefinedTerm
94 Nd1415addf721402383d330d356b53718 schema:name nlm_unique_id
95 schema:value 100965194
96 rdf:type schema:PropertyValue
97 Ndc6d74181315441695dd50f07963d988 schema:name dimensions_id
98 schema:value pub.1053076981
99 rdf:type schema:PropertyValue
100 Ne2f112ee48fb455fbd9df07103297248 rdf:first sg:person.01320220640.40
101 rdf:rest N63fa2aa565004aa18d90ade10a5ac3b5
102 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
103 schema:name Medical and Health Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
106 schema:name Medical Microbiology
107 rdf:type schema:DefinedTerm
108 sg:journal.1023786 schema:issn 1471-2105
109 schema:name BMC Bioinformatics
110 rdf:type schema:Periodical
111 sg:person.01320220640.40 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
112 schema:familyName Truszkowski
113 schema:givenName Jakub
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320220640.40
115 rdf:type schema:Person
116 sg:person.0642727740.54 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
117 schema:familyName Brown
118 schema:givenName Daniel G
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54
120 rdf:type schema:Person
121 sg:pub.10.1007/978-3-540-30219-3_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000399524
122 https://doi.org/10.1007/978-3-540-30219-3_36
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-642-13509-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016820320
125 https://doi.org/10.1007/978-3-642-13509-5_16
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00774-011-0273-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170507
128 https://doi.org/10.1007/s00774-011-0273-9
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10463-009-0259-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035572386
131 https://doi.org/10.1007/s10463-009-0259-8
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1471-2105-11-s1-s40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052005567
134 https://doi.org/10.1186/1471-2105-11-s1-s40
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1471-2105-7-265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045264325
137 https://doi.org/10.1186/1471-2105-7-265
138 rdf:type schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1083359354 schema:CreativeWork
140 https://doi.org/10.1016/s1473-3099(02)00343-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046533928
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1089/106652701752236214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204899
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1089/aid.2008.0064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059225664
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1093/bioinformatics/btg1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034588758
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/bioinformatics/bti459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039458980
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/bioinformatics/bti607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005222175
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/btl474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042979967
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/btl613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032867388
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btn607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006716029
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/nar/gkf436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376662
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/gkl200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014110611
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/nar/gkp371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036965307
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1097/00002030-200210180-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030723780
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.288.5463.55d schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569034
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1371/journal.pcbi.1000318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041599581
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2202/1544-6115.1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012991796
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
175 schema:name David R Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...