Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Qin Chang, Yihui Luan, Fengzhu Sun

ABSTRACT

BACKGROUND: Beta diversity, which involves the assessment of differences between communities, is an important problem in ecological studies. Many statistical methods have been developed to quantify beta diversity, and among them, UniFrac and weighted-UniFrac (W-UniFrac) are widely used. The W-UniFrac is a weighted sum of branch lengths in a phylogenetic tree of the sequences from the communities. However, W-UniFrac does not consider the variation of the weights under random sampling resulting in less power detecting the differences between communities. RESULTS: We develop a new statistic termed variance adjusted weighted UniFrac (VAW-UniFrac) to compare two communities based on the phylogenetic relationships of the individuals. The VAW-UniFrac is used to test if the two communities are different. To test the power of VAW-UniFrac, we first ran a series of simulations which revealed that it always outperforms W-UniFrac, as well as UniFrac when the individuals are not uniformly distributed. Next, all three methods were applied to analyze three large 16S rRNA sequence collections, including human skin bacteria, mouse gut microbial communities, microbial communities from hypersaline soil and sediments, and a tropical forest census data. Both simulations and applications to real data show that VAW-UniFrac can satisfactorily measure differences between communities, considering not only the species composition but also abundance information. CONCLUSIONS: VAW-UniFrac can recover biological insights that cannot be revealed by other beta diversity measures, and it provides a novel alternative for comparing communities. More... »

PAGES

118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-12-118

DOI

http://dx.doi.org/10.1186/1471-2105-12-118

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030165226

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21518444


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Tract", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Mathematics, Shandong University, 250100, Jinan, Shandong, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Qin", 
        "id": "sg:person.01047211101.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047211101.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Mathematics, Shandong University, 250100, Jinan, Shandong, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luan", 
        "givenName": "Yihui", 
        "id": "sg:person.01363333327.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363333327.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "TNLIST/Department of Automation, Tsinghua University, 100084, Beijing, PR China", 
            "Molecular and Computational Biology Program, University of Southern California, 90089-2910, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Fengzhu", 
        "id": "sg:person.0637727227.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637727227.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2004.00829.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002888389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1124234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.084616.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013314685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1420-9101.1996.9020153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02567-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017998844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3237007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018514309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019352157", 
          "https://doi.org/10.1038/ismej.2010.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019352157", 
          "https://doi.org/10.1038/ismej.2010.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019669855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.9.4374-4376.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.075549.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022242808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.8.3673-3682.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023008403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.72.4.2379-2384.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023628939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024882111", 
          "https://doi.org/10.1038/ismej.2009.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024882111", 
          "https://doi.org/10.1038/ismej.2009.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01996-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025834307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2008.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029709848", 
          "https://doi.org/10.1038/ismej.2008.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.9.5485-5492.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031053440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.03006-05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034568952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504978102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038909005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504978102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038909005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041987064", 
          "https://doi.org/10.1007/978-1-4471-0155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041987064", 
          "https://doi.org/10.1007/978-1-4471-0155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.12.8228-8235.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042157769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044499388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2745.2008.01421.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045789032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1155725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047129566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047454621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047805213", 
          "https://doi.org/10.1038/nature06810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0308127100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049369749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266467403001081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053771558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/53.3-4.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5401.554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077181267", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Beta diversity, which involves the assessment of differences between communities, is an important problem in ecological studies. Many statistical methods have been developed to quantify beta diversity, and among them, UniFrac and weighted-UniFrac (W-UniFrac) are widely used. The W-UniFrac is a weighted sum of branch lengths in a phylogenetic tree of the sequences from the communities. However, W-UniFrac does not consider the variation of the weights under random sampling resulting in less power detecting the differences between communities.\nRESULTS: We develop a new statistic termed variance adjusted weighted UniFrac (VAW-UniFrac) to compare two communities based on the phylogenetic relationships of the individuals. The VAW-UniFrac is used to test if the two communities are different. To test the power of VAW-UniFrac, we first ran a series of simulations which revealed that it always outperforms W-UniFrac, as well as UniFrac when the individuals are not uniformly distributed. Next, all three methods were applied to analyze three large 16S rRNA sequence collections, including human skin bacteria, mouse gut microbial communities, microbial communities from hypersaline soil and sediments, and a tropical forest census data. Both simulations and applications to real data show that VAW-UniFrac can satisfactorily measure differences between communities, considering not only the species composition but also abundance information.\nCONCLUSIONS: VAW-UniFrac can recover biological insights that cannot be revealed by other beta diversity measures, and it provides a novel alternative for comparing communities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-12-118", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4915202", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3073246", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5001452", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4907688", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3443996", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3348519", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3373968", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3022866", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3050968", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3300213", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3119651", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3044347", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3423387", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3319213", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3390417", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny", 
    "pagination": "118", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fb4431b0ba250cb5c6f078d8a4b5856e437dfe590be96b1d7215516e945a792"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21518444"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-12-118"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030165226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-12-118", 
      "https://app.dimensions.ai/details/publication/pub.1030165226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-12-118"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-118'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-118'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-118'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-12-118'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      73 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-12-118 schema:about N08bdac82bfdc45daaacea0ea5d8eba0c
2 N0ae0ffdf2a0144a9ab1befc5e09184e6
3 N3db94ef6572145ca93e869099bb602a0
4 N5ef2224542834232b27a64a4bfcbfd80
5 N68c06406550141319acc497f701fa49e
6 N81113bcf2d954c4288164d53b8d38db0
7 Nc36761f144a4492d9057f0084720822a
8 Nca263c3cd6fd40c5b17d651878e40139
9 Nd24794a9ff344c2f98883990d470d77b
10 Nd39b2271a10042babf53cc1c1a7e8913
11 Nd43dd0976d06403ba5b5db9bb13424c2
12 Necf74e1fca7f4d89822ce4af9d4f4821
13 anzsrc-for:06
14 anzsrc-for:0605
15 schema:author Nc93de34b3a164e38b8484b45d8f5882f
16 schema:citation sg:pub.10.1007/978-1-4471-0155-0
17 sg:pub.10.1038/ismej.2008.5
18 sg:pub.10.1038/ismej.2009.97
19 sg:pub.10.1038/ismej.2010.3
20 sg:pub.10.1038/nature06810
21 https://app.dimensions.ai/details/publication/pub.1077181267
22 https://doi.org/10.1016/s0022-2836(05)80360-2
23 https://doi.org/10.1017/s0266467403001081
24 https://doi.org/10.1046/j.1420-9101.1996.9020153.x
25 https://doi.org/10.1073/pnas.0308127100
26 https://doi.org/10.1073/pnas.0504978102
27 https://doi.org/10.1093/biomet/53.3-4.325
28 https://doi.org/10.1093/nar/gkh293
29 https://doi.org/10.1101/gr.075549.107
30 https://doi.org/10.1101/gr.084616.108
31 https://doi.org/10.1111/j.1365-2745.2008.01421.x
32 https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
33 https://doi.org/10.1111/j.1471-8286.2004.00829.x
34 https://doi.org/10.1126/science.1124234
35 https://doi.org/10.1126/science.1155725
36 https://doi.org/10.1126/science.1177486
37 https://doi.org/10.1126/science.283.5401.554
38 https://doi.org/10.1128/aem.01996-06
39 https://doi.org/10.1128/aem.02567-06
40 https://doi.org/10.1128/aem.03006-05
41 https://doi.org/10.1128/aem.67.9.4374-4376.2001
42 https://doi.org/10.1128/aem.68.8.3673-3682.2002
43 https://doi.org/10.1128/aem.70.9.5485-5492.2004
44 https://doi.org/10.1128/aem.71.12.8228-8235.2005
45 https://doi.org/10.1128/aem.72.4.2379-2384.2006
46 https://doi.org/10.2307/2412116
47 https://doi.org/10.2307/3237007
48 schema:datePublished 2011-12
49 schema:datePublishedReg 2011-12-01
50 schema:description BACKGROUND: Beta diversity, which involves the assessment of differences between communities, is an important problem in ecological studies. Many statistical methods have been developed to quantify beta diversity, and among them, UniFrac and weighted-UniFrac (W-UniFrac) are widely used. The W-UniFrac is a weighted sum of branch lengths in a phylogenetic tree of the sequences from the communities. However, W-UniFrac does not consider the variation of the weights under random sampling resulting in less power detecting the differences between communities. RESULTS: We develop a new statistic termed variance adjusted weighted UniFrac (VAW-UniFrac) to compare two communities based on the phylogenetic relationships of the individuals. The VAW-UniFrac is used to test if the two communities are different. To test the power of VAW-UniFrac, we first ran a series of simulations which revealed that it always outperforms W-UniFrac, as well as UniFrac when the individuals are not uniformly distributed. Next, all three methods were applied to analyze three large 16S rRNA sequence collections, including human skin bacteria, mouse gut microbial communities, microbial communities from hypersaline soil and sediments, and a tropical forest census data. Both simulations and applications to real data show that VAW-UniFrac can satisfactorily measure differences between communities, considering not only the species composition but also abundance information. CONCLUSIONS: VAW-UniFrac can recover biological insights that cannot be revealed by other beta diversity measures, and it provides a novel alternative for comparing communities.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf Nc255b456ae8445519f3677916b04c3f6
55 Nf9f10f227275459a9e9572e4e0e9bdff
56 sg:journal.1023786
57 schema:name Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny
58 schema:pagination 118
59 schema:productId N380c667bacfa4a87b856d49cc9b9a58d
60 N56cffd151cb5461883cbf0d940898642
61 N61c56da99f3041cf92e324c5fcac022d
62 Na74f29c6181e499693ef31291e369a65
63 Nbc9d002c44744731b371b6fee6c9f9a2
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030165226
65 https://doi.org/10.1186/1471-2105-12-118
66 schema:sdDatePublished 2019-04-10T13:14
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nffcebc24b0cf41978ed8dc1868e614c9
69 schema:url http://link.springer.com/10.1186/1471-2105-12-118
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N08bdac82bfdc45daaacea0ea5d8eba0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Metagenome
75 rdf:type schema:DefinedTerm
76 N0ae0ffdf2a0144a9ab1befc5e09184e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Soil Microbiology
78 rdf:type schema:DefinedTerm
79 N380c667bacfa4a87b856d49cc9b9a58d schema:name dimensions_id
80 schema:value pub.1030165226
81 rdf:type schema:PropertyValue
82 N3db94ef6572145ca93e869099bb602a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Mice
84 rdf:type schema:DefinedTerm
85 N56cffd151cb5461883cbf0d940898642 schema:name pubmed_id
86 schema:value 21518444
87 rdf:type schema:PropertyValue
88 N5ef2224542834232b27a64a4bfcbfd80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Phylogeny
90 rdf:type schema:DefinedTerm
91 N61c56da99f3041cf92e324c5fcac022d schema:name nlm_unique_id
92 schema:value 100965194
93 rdf:type schema:PropertyValue
94 N68c06406550141319acc497f701fa49e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name RNA, Bacterial
96 rdf:type schema:DefinedTerm
97 N7c26ebf32d5a4eee9245c57c3f4af2b4 rdf:first sg:person.0637727227.25
98 rdf:rest rdf:nil
99 N81113bcf2d954c4288164d53b8d38db0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Bacteria
101 rdf:type schema:DefinedTerm
102 N9dab27c028d74d048a941c2edcc7d40c rdf:first sg:person.01363333327.12
103 rdf:rest N7c26ebf32d5a4eee9245c57c3f4af2b4
104 Na74f29c6181e499693ef31291e369a65 schema:name readcube_id
105 schema:value 8fb4431b0ba250cb5c6f078d8a4b5856e437dfe590be96b1d7215516e945a792
106 rdf:type schema:PropertyValue
107 Nbc9d002c44744731b371b6fee6c9f9a2 schema:name doi
108 schema:value 10.1186/1471-2105-12-118
109 rdf:type schema:PropertyValue
110 Nc255b456ae8445519f3677916b04c3f6 schema:volumeNumber 12
111 rdf:type schema:PublicationVolume
112 Nc36761f144a4492d9057f0084720822a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Ecology
114 rdf:type schema:DefinedTerm
115 Nc93de34b3a164e38b8484b45d8f5882f rdf:first sg:person.01047211101.81
116 rdf:rest N9dab27c028d74d048a941c2edcc7d40c
117 Nca263c3cd6fd40c5b17d651878e40139 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Animals
119 rdf:type schema:DefinedTerm
120 Nd24794a9ff344c2f98883990d470d77b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Skin
122 rdf:type schema:DefinedTerm
123 Nd39b2271a10042babf53cc1c1a7e8913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Gastrointestinal Tract
125 rdf:type schema:DefinedTerm
126 Nd43dd0976d06403ba5b5db9bb13424c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name RNA, Ribosomal, 16S
128 rdf:type schema:DefinedTerm
129 Necf74e1fca7f4d89822ce4af9d4f4821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 Nf9f10f227275459a9e9572e4e0e9bdff schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 Nffcebc24b0cf41978ed8dc1868e614c9 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
140 schema:name Microbiology
141 rdf:type schema:DefinedTerm
142 sg:grant.3022866 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
143 rdf:type schema:MonetaryGrant
144 sg:grant.3044347 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
145 rdf:type schema:MonetaryGrant
146 sg:grant.3050968 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
147 rdf:type schema:MonetaryGrant
148 sg:grant.3073246 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
149 rdf:type schema:MonetaryGrant
150 sg:grant.3119651 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
151 rdf:type schema:MonetaryGrant
152 sg:grant.3300213 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
153 rdf:type schema:MonetaryGrant
154 sg:grant.3319213 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
155 rdf:type schema:MonetaryGrant
156 sg:grant.3348519 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
157 rdf:type schema:MonetaryGrant
158 sg:grant.3373968 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
159 rdf:type schema:MonetaryGrant
160 sg:grant.3390417 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
161 rdf:type schema:MonetaryGrant
162 sg:grant.3423387 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
163 rdf:type schema:MonetaryGrant
164 sg:grant.3443996 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
165 rdf:type schema:MonetaryGrant
166 sg:grant.4907688 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
167 rdf:type schema:MonetaryGrant
168 sg:grant.4915202 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
169 rdf:type schema:MonetaryGrant
170 sg:grant.5001452 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-12-118
171 rdf:type schema:MonetaryGrant
172 sg:journal.1023786 schema:issn 1471-2105
173 schema:name BMC Bioinformatics
174 rdf:type schema:Periodical
175 sg:person.01047211101.81 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
176 schema:familyName Chang
177 schema:givenName Qin
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047211101.81
179 rdf:type schema:Person
180 sg:person.01363333327.12 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
181 schema:familyName Luan
182 schema:givenName Yihui
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363333327.12
184 rdf:type schema:Person
185 sg:person.0637727227.25 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
186 schema:familyName Sun
187 schema:givenName Fengzhu
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637727227.25
189 rdf:type schema:Person
190 sg:pub.10.1007/978-1-4471-0155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041987064
191 https://doi.org/10.1007/978-1-4471-0155-0
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ismej.2008.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029709848
194 https://doi.org/10.1038/ismej.2008.5
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ismej.2009.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024882111
197 https://doi.org/10.1038/ismej.2009.97
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ismej.2010.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019352157
200 https://doi.org/10.1038/ismej.2010.3
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature06810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047805213
203 https://doi.org/10.1038/nature06810
204 rdf:type schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1077181267 schema:CreativeWork
206 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1017/s0266467403001081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053771558
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1046/j.1420-9101.1996.9020153.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017573133
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1073/pnas.0308127100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049369749
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1073/pnas.0504978102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038909005
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/biomet/53.3-4.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417555
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/nar/gkh293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047454621
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1101/gr.075549.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022242808
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1101/gr.084616.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013314685
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/j.1365-2745.2008.01421.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045789032
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044499388
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/j.1471-8286.2004.00829.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002888389
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1124234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869298
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.1155725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047129566
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.1177486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019669855
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1126/science.283.5401.554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563947
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1128/aem.01996-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025834307
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1128/aem.02567-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017998844
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1128/aem.03006-05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568952
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1128/aem.67.9.4374-4376.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080760
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1128/aem.68.8.3673-3682.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023008403
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1128/aem.70.9.5485-5492.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031053440
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/aem.71.12.8228-8235.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042157769
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/aem.72.4.2379-2384.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023628939
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2307/2412116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920601
255 rdf:type schema:CreativeWork
256 https://doi.org/10.2307/3237007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018514309
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
259 schema:name School of Mathematics, Shandong University, 250100, Jinan, Shandong, PR China
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
262 schema:name Molecular and Computational Biology Program, University of Southern California, 90089-2910, Los Angeles, CA, USA
263 TNLIST/Department of Automation, Tsinghua University, 100084, Beijing, PR China
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...