Sensitivity analysis of dynamic biological systems with time-delays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10-15

AUTHORS

Wu Hsiung Wu, Feng Sheng Wang, Maw Shang Chang

ABSTRACT

BACKGROUND: Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. RESULTS: We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. CONCLUSIONS: By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays. More... »

PAGES

s12-s12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-s7-s12

DOI

http://dx.doi.org/10.1186/1471-2105-11-s7-s12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1078307616

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21106119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Fragmentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "NF-kappa B", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Necrosis Factor-alpha", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wu Hsiung", 
        "id": "sg:person.0710177757.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710177757.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Feng Sheng", 
        "id": "sg:person.011660076724.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660076724.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Maw Shang", 
        "id": "sg:person.013174232477.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174232477.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/81208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053176004", 
          "https://doi.org/10.1038/81208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03028370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045035904", 
          "https://doi.org/10.1007/bf03028370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-005-0339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012130331", 
          "https://doi.org/10.1007/s00285-005-0339-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-s12-s17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034971381", 
          "https://doi.org/10.1186/1471-2105-9-s12-s17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/376167a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032619133", 
          "https://doi.org/10.1038/376167a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002850050089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043973966", 
          "https://doi.org/10.1007/s002850050089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/77589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049168629", 
          "https://doi.org/10.1038/77589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/23948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049122030", 
          "https://doi.org/10.1038/23948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019107718128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006909781", 
          "https://doi.org/10.1023/a:1019107718128"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10-15", 
    "datePublishedReg": "2010-10-15", 
    "description": "BACKGROUND: Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary.\nRESULTS: We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-\u03b1 signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention.\nCONCLUSIONS: By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-11-s7-s12", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "ordinal differential equations", 
      "dynamic sensitivity analysis", 
      "sensitivity equations", 
      "DDE model", 
      "partial derivatives", 
      "Jacobian matrix", 
      "delay differential equation model", 
      "adaptive step size control", 
      "time-delay systems", 
      "differential equation model", 
      "automatic differentiation technique", 
      "step size control", 
      "solution of models", 
      "extended algorithm", 
      "complex biological systems", 
      "differential equations", 
      "complex equations", 
      "feedback control", 
      "mathematical modeling", 
      "symbolic manipulation", 
      "dynamic biological systems", 
      "sensitivity analysis", 
      "equations", 
      "differentiation technique", 
      "time delay", 
      "biological systems", 
      "efficient algorithm", 
      "signal transduction networks", 
      "analytic methods", 
      "control system", 
      "direct method", 
      "realistic model", 
      "less user intervention", 
      "numerical sensitivity analysis", 
      "computation", 
      "algorithm", 
      "dynamic sensitivity", 
      "transduction networks", 
      "solution", 
      "equation model", 
      "complex functions", 
      "model", 
      "error", 
      "matrix", 
      "cardiovascular control system", 
      "system", 
      "theory", 
      "network", 
      "modeling", 
      "problem", 
      "user intervention", 
      "size control", 
      "derivatives", 
      "good tool", 
      "delay", 
      "long time", 
      "analysis", 
      "approach", 
      "function", 
      "control", 
      "technique", 
      "human effort", 
      "automatic approach", 
      "time", 
      "tool", 
      "end users", 
      "results", 
      "human error", 
      "major effort", 
      "efforts", 
      "process", 
      "manipulation", 
      "background", 
      "sensitivity", 
      "users", 
      "DDE", 
      "expression", 
      "study", 
      "gene expression", 
      "intervention", 
      "method", 
      "TNF", 
      "adaptive direct-decoupled algorithm", 
      "direct-decoupled algorithm"
    ], 
    "name": "Sensitivity analysis of dynamic biological systems with time-delays", 
    "pagination": "s12-s12", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1078307616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-s7-s12"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21106119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-s7-s12", 
      "https://app.dimensions.ai/details/publication/pub.1078307616"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-11-s7-s12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s7-s12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s7-s12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s7-s12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s7-s12'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      22 PREDICATES      133 URIs      114 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-s7-s12 schema:about N0480d6be504c455b8132dedc0c91bd4d
2 N2acc3de90ea64eb99b1aa3426858dcf9
3 N2c2723d77b8e40caa05be43d83bb4d4b
4 N33e55430e188442e9924345da745be69
5 N34b2352be01b419da5e5d4c908f35de5
6 N3f6e93d083e040dba67091ee841fc691
7 N4f4e5575d0d64befb8c6bef5ce4ec1f2
8 N9f549961e630445ebdc8f278bbc7ad95
9 Nb8ed70454f094c47b457a46811d63609
10 Nbfaf29954a054c0483394d253265d6a6
11 Nf59a2160db63454cac543ee6316dd6be
12 Nf946e4dd644a40149180644e35d5450b
13 anzsrc-for:01
14 anzsrc-for:0102
15 anzsrc-for:0103
16 anzsrc-for:0104
17 schema:author Nb6ca268cea0846109f1cacee70c569ed
18 schema:citation sg:pub.10.1007/bf03028370
19 sg:pub.10.1007/s00285-005-0339-1
20 sg:pub.10.1007/s002850050089
21 sg:pub.10.1023/a:1019107718128
22 sg:pub.10.1038/23948
23 sg:pub.10.1038/376167a0
24 sg:pub.10.1038/77589
25 sg:pub.10.1038/81208
26 sg:pub.10.1186/1471-2105-9-s12-s17
27 schema:datePublished 2010-10-15
28 schema:datePublishedReg 2010-10-15
29 schema:description BACKGROUND: Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. RESULTS: We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. CONCLUSIONS: By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N5486f14999054e11b9285ab4c25eed14
34 Nde3d4659c4b44d1abb3e8a370d5690a8
35 sg:journal.1023786
36 schema:keywords DDE
37 DDE model
38 Jacobian matrix
39 TNF
40 adaptive direct-decoupled algorithm
41 adaptive step size control
42 algorithm
43 analysis
44 analytic methods
45 approach
46 automatic approach
47 automatic differentiation technique
48 background
49 biological systems
50 cardiovascular control system
51 complex biological systems
52 complex equations
53 complex functions
54 computation
55 control
56 control system
57 delay
58 delay differential equation model
59 derivatives
60 differential equation model
61 differential equations
62 differentiation technique
63 direct method
64 direct-decoupled algorithm
65 dynamic biological systems
66 dynamic sensitivity
67 dynamic sensitivity analysis
68 efficient algorithm
69 efforts
70 end users
71 equation model
72 equations
73 error
74 expression
75 extended algorithm
76 feedback control
77 function
78 gene expression
79 good tool
80 human effort
81 human error
82 intervention
83 less user intervention
84 long time
85 major effort
86 manipulation
87 mathematical modeling
88 matrix
89 method
90 model
91 modeling
92 network
93 numerical sensitivity analysis
94 ordinal differential equations
95 partial derivatives
96 problem
97 process
98 realistic model
99 results
100 sensitivity
101 sensitivity analysis
102 sensitivity equations
103 signal transduction networks
104 size control
105 solution
106 solution of models
107 step size control
108 study
109 symbolic manipulation
110 system
111 technique
112 theory
113 time
114 time delay
115 time-delay systems
116 tool
117 transduction networks
118 user intervention
119 users
120 schema:name Sensitivity analysis of dynamic biological systems with time-delays
121 schema:pagination s12-s12
122 schema:productId N169cb4486286466297f46faf023fa0e1
123 N4ce32e5421ef475984cb137beda696db
124 Nbe47582435be4665abe96cdeb918e1d2
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078307616
126 https://doi.org/10.1186/1471-2105-11-s7-s12
127 schema:sdDatePublished 2021-11-01T18:15
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher N17e367b3ca5a47b8a53143cbadcf3f4a
130 schema:url https://doi.org/10.1186/1471-2105-11-s7-s12
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N0480d6be504c455b8132dedc0c91bd4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Computer Simulation
136 rdf:type schema:DefinedTerm
137 N169cb4486286466297f46faf023fa0e1 schema:name doi
138 schema:value 10.1186/1471-2105-11-s7-s12
139 rdf:type schema:PropertyValue
140 N17e367b3ca5a47b8a53143cbadcf3f4a schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 N1f3fa1f55336400ea314443d1dd7dfe7 rdf:first sg:person.013174232477.45
143 rdf:rest rdf:nil
144 N2acc3de90ea64eb99b1aa3426858dcf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Tumor Necrosis Factor-alpha
146 rdf:type schema:DefinedTerm
147 N2c2723d77b8e40caa05be43d83bb4d4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 N33e55430e188442e9924345da745be69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Systems Biology
152 rdf:type schema:DefinedTerm
153 N34b2352be01b419da5e5d4c908f35de5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Cardiovascular System
155 rdf:type schema:DefinedTerm
156 N3f6e93d083e040dba67091ee841fc691 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Reproducibility of Results
158 rdf:type schema:DefinedTerm
159 N4ce32e5421ef475984cb137beda696db schema:name dimensions_id
160 schema:value pub.1078307616
161 rdf:type schema:PropertyValue
162 N4f4e5575d0d64befb8c6bef5ce4ec1f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name NF-kappa B
164 rdf:type schema:DefinedTerm
165 N5486f14999054e11b9285ab4c25eed14 schema:volumeNumber 11
166 rdf:type schema:PublicationVolume
167 N9f549961e630445ebdc8f278bbc7ad95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Models, Biological
169 rdf:type schema:DefinedTerm
170 Nb6ca268cea0846109f1cacee70c569ed rdf:first sg:person.0710177757.90
171 rdf:rest Nf5b16ead13a74fe3af09c396b0ae8c11
172 Nb8ed70454f094c47b457a46811d63609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Algorithms
174 rdf:type schema:DefinedTerm
175 Nbe47582435be4665abe96cdeb918e1d2 schema:name pubmed_id
176 schema:value 21106119
177 rdf:type schema:PropertyValue
178 Nbfaf29954a054c0483394d253265d6a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Time Factors
180 rdf:type schema:DefinedTerm
181 Nde3d4659c4b44d1abb3e8a370d5690a8 schema:issueNumber Suppl 7
182 rdf:type schema:PublicationIssue
183 Nf59a2160db63454cac543ee6316dd6be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name DNA Fragmentation
185 rdf:type schema:DefinedTerm
186 Nf5b16ead13a74fe3af09c396b0ae8c11 rdf:first sg:person.011660076724.07
187 rdf:rest N1f3fa1f55336400ea314443d1dd7dfe7
188 Nf946e4dd644a40149180644e35d5450b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Signal Transduction
190 rdf:type schema:DefinedTerm
191 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
192 schema:name Mathematical Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
195 schema:name Applied Mathematics
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
198 schema:name Numerical and Computational Mathematics
199 rdf:type schema:DefinedTerm
200 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
201 schema:name Statistics
202 rdf:type schema:DefinedTerm
203 sg:journal.1023786 schema:issn 1471-2105
204 schema:name BMC Bioinformatics
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.011660076724.07 schema:affiliation grid-institutes:grid.412047.4
208 schema:familyName Wang
209 schema:givenName Feng Sheng
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660076724.07
211 rdf:type schema:Person
212 sg:person.013174232477.45 schema:affiliation grid-institutes:grid.412047.4
213 schema:familyName Chang
214 schema:givenName Maw Shang
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174232477.45
216 rdf:type schema:Person
217 sg:person.0710177757.90 schema:affiliation grid-institutes:grid.412047.4
218 schema:familyName Wu
219 schema:givenName Wu Hsiung
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710177757.90
221 rdf:type schema:Person
222 sg:pub.10.1007/bf03028370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045035904
223 https://doi.org/10.1007/bf03028370
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00285-005-0339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012130331
226 https://doi.org/10.1007/s00285-005-0339-1
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s002850050089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043973966
229 https://doi.org/10.1007/s002850050089
230 rdf:type schema:CreativeWork
231 sg:pub.10.1023/a:1019107718128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006909781
232 https://doi.org/10.1023/a:1019107718128
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/23948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049122030
235 https://doi.org/10.1038/23948
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/376167a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032619133
238 https://doi.org/10.1038/376167a0
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/77589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049168629
241 https://doi.org/10.1038/77589
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/81208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053176004
244 https://doi.org/10.1038/81208
245 rdf:type schema:CreativeWork
246 sg:pub.10.1186/1471-2105-9-s12-s17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034971381
247 https://doi.org/10.1186/1471-2105-9-s12-s17
248 rdf:type schema:CreativeWork
249 grid-institutes:grid.412047.4 schema:alternateName Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
250 Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
251 schema:name Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
252 Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...