Comparative analysis of thermophilic and mesophilic proteins using Protein Energy Networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

MS Vijayabaskar, Saraswathi Vishveshwara

ABSTRACT

BACKGROUND: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. METHODS: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. RESULTS: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. CONCLUSION: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective. More... »

PAGES

s49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-s1-s49

DOI

http://dx.doi.org/10.1186/1471-2105-11-s1-s49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049597782

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20122223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1608", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Sociology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vijayabaskar", 
        "givenName": "MS", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vishveshwara", 
        "givenName": "Saraswathi", 
        "id": "sg:person.01321270220.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321270220.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006278061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpc.2005.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012446051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpc.2005.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012446051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00000935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012997567", 
          "https://doi.org/10.1007/pl00000935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013759612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013759612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.65.1.1-43.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020213941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.11.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023393481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.24.13674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032094913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036026326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-2126(00)00133-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036916753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.106.099903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045616207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503890102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049279200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.062130306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050596678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.105.064485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050658725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/13.11.753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053402024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi025523t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055195632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi025523t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055195632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi8007559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055208646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi8007559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055208646"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "BACKGROUND: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability.\nMETHODS: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues.\nRESULTS: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs.\nCONCLUSION: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-s1-s49", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Comparative analysis of thermophilic and mesophilic proteins using Protein Energy Networks", 
    "pagination": "s49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec453c5e20fd64c733596a3ad7e611f5c4ed3474bba2602c277c8895695a7240"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20122223"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-s1-s49"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049597782"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-s1-s49", 
      "https://app.dimensions.ai/details/publication/pub.1049597782"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-11-S1-S49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s1-s49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s1-s49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s1-s49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-s1-s49'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      52 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-s1-s49 schema:about N1598d77be78b41388a852193ad6e423c
2 N3205d9bdd4c64586b4fd99c489bd77a7
3 N3d59363a9b6242e2871a7f6ab7a2ba6c
4 N79907cf1e7f445ca854b4b7840eaf75f
5 Nc191545521234093a28904a11a431468
6 Ncfe87646443c47a486f5765e1dd4b298
7 anzsrc-for:16
8 anzsrc-for:1608
9 schema:author N87b5bfa837334b42a9878dd9e71cdaa3
10 schema:citation sg:pub.10.1007/pl00000935
11 sg:pub.10.1038/nrg1272
12 https://doi.org/10.1002/jcc.20291
13 https://doi.org/10.1016/j.bpc.2005.09.018
14 https://doi.org/10.1016/j.jmb.2003.08.061
15 https://doi.org/10.1016/j.jmb.2005.11.065
16 https://doi.org/10.1016/s0969-2126(00)00133-7
17 https://doi.org/10.1021/bi025523t
18 https://doi.org/10.1021/bi8007559
19 https://doi.org/10.1073/pnas.0503890102
20 https://doi.org/10.1073/pnas.96.24.13674
21 https://doi.org/10.1093/bioinformatics/btl039
22 https://doi.org/10.1093/protein/13.11.753
23 https://doi.org/10.1110/ps.062130306
24 https://doi.org/10.1128/mmbr.65.1.1-43.2001
25 https://doi.org/10.1529/biophysj.105.064485
26 https://doi.org/10.1529/biophysj.106.099903
27 schema:datePublished 2010-01
28 schema:datePublishedReg 2010-01-01
29 schema:description BACKGROUND: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. METHODS: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. RESULTS: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. CONCLUSION: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N17cdc060466c4d80a697a9c40d6ecd1b
34 Na7fd234bc2ef4ff2a372587529df2912
35 sg:journal.1023786
36 schema:name Comparative analysis of thermophilic and mesophilic proteins using Protein Energy Networks
37 schema:pagination s49
38 schema:productId N407d7a4cf3ca4b3db0b658023ca9666d
39 N49477b3ed29d4bd3a98f96b58cb61e78
40 N7a59069fd877466e8191b8d466d1156c
41 N91b11239fbc441f5a8d7c2b7310512f2
42 Nce93697cc7254c48ad434d07c8799aa1
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049597782
44 https://doi.org/10.1186/1471-2105-11-s1-s49
45 schema:sdDatePublished 2019-04-10T18:19
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N67cc5ae0f43c4b3c92bde0902ca7e1e1
48 schema:url http://link.springer.com/10.1186/1471-2105-11-S1-S49
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N10f4752988964c7499e9dd90dae60f53 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
53 schema:familyName Vijayabaskar
54 schema:givenName MS
55 rdf:type schema:Person
56 N1598d77be78b41388a852193ad6e423c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Proteins
58 rdf:type schema:DefinedTerm
59 N17cdc060466c4d80a697a9c40d6ecd1b schema:issueNumber Suppl 1
60 rdf:type schema:PublicationIssue
61 N3205d9bdd4c64586b4fd99c489bd77a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Temperature
63 rdf:type schema:DefinedTerm
64 N3d59363a9b6242e2871a7f6ab7a2ba6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Computational Biology
66 rdf:type schema:DefinedTerm
67 N407d7a4cf3ca4b3db0b658023ca9666d schema:name doi
68 schema:value 10.1186/1471-2105-11-s1-s49
69 rdf:type schema:PropertyValue
70 N49477b3ed29d4bd3a98f96b58cb61e78 schema:name readcube_id
71 schema:value ec453c5e20fd64c733596a3ad7e611f5c4ed3474bba2602c277c8895695a7240
72 rdf:type schema:PropertyValue
73 N67cc5ae0f43c4b3c92bde0902ca7e1e1 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N79907cf1e7f445ca854b4b7840eaf75f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Protein Conformation
77 rdf:type schema:DefinedTerm
78 N7a59069fd877466e8191b8d466d1156c schema:name nlm_unique_id
79 schema:value 100965194
80 rdf:type schema:PropertyValue
81 N87b5bfa837334b42a9878dd9e71cdaa3 rdf:first N10f4752988964c7499e9dd90dae60f53
82 rdf:rest Ne69cdf94e2084a17b8591cca27e71674
83 N91b11239fbc441f5a8d7c2b7310512f2 schema:name pubmed_id
84 schema:value 20122223
85 rdf:type schema:PropertyValue
86 Na7fd234bc2ef4ff2a372587529df2912 schema:volumeNumber 11
87 rdf:type schema:PublicationVolume
88 Nc191545521234093a28904a11a431468 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Thermodynamics
90 rdf:type schema:DefinedTerm
91 Nce93697cc7254c48ad434d07c8799aa1 schema:name dimensions_id
92 schema:value pub.1049597782
93 rdf:type schema:PropertyValue
94 Ncfe87646443c47a486f5765e1dd4b298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Models, Molecular
96 rdf:type schema:DefinedTerm
97 Ne69cdf94e2084a17b8591cca27e71674 rdf:first sg:person.01321270220.41
98 rdf:rest rdf:nil
99 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
100 schema:name Studies in Human Society
101 rdf:type schema:DefinedTerm
102 anzsrc-for:1608 schema:inDefinedTermSet anzsrc-for:
103 schema:name Sociology
104 rdf:type schema:DefinedTerm
105 sg:journal.1023786 schema:issn 1471-2105
106 schema:name BMC Bioinformatics
107 rdf:type schema:Periodical
108 sg:person.01321270220.41 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
109 schema:familyName Vishveshwara
110 schema:givenName Saraswathi
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321270220.41
112 rdf:type schema:Person
113 sg:pub.10.1007/pl00000935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012997567
114 https://doi.org/10.1007/pl00000935
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
117 https://doi.org/10.1038/nrg1272
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/jcc.20291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013759612
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.bpc.2005.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012446051
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jmb.2003.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036026326
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jmb.2005.11.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023393481
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0969-2126(00)00133-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036916753
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/bi025523t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055195632
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/bi8007559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055208646
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1073/pnas.0503890102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279200
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1073/pnas.96.24.13674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032094913
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/bioinformatics/btl039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006278061
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/protein/13.11.753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053402024
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1110/ps.062130306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050596678
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1128/mmbr.65.1.1-43.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020213941
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1529/biophysj.105.064485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050658725
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1529/biophysj.106.099903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045616207
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
150 schema:name Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...