A novel approach to simulate gene-environment interactions in complex diseases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01-05

AUTHORS

Roberto Amato, Michele Pinelli, Daniel D'Andrea, Gennaro Miele, Mario Nicodemi, Giancarlo Raiconi, Sergio Cocozza

ABSTRACT

BackgroundComplex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones.ResultsWe present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful.ConclusionsBy the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-8

DOI

http://dx.doi.org/10.1186/1471-2105-11-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042715118

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20051127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \"Federico II\", Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \"Federico II\", Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amato", 
        "givenName": "Roberto", 
        "id": "sg:person.01246065020.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246065020.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinelli", 
        "givenName": "Michele", 
        "id": "sg:person.01171142772.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171142772.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D'Andrea", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Napoli, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470211.1", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \"Federico II\", Napoli, Italy", 
            "INFN Sezione di Napoli, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "Gennaro", 
        "id": "sg:person.01160121450.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160121450.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "INFN Sezione di Napoli, Napoli, Italy", 
            "Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicodemi", 
        "givenName": "Mario", 
        "id": "sg:person.0714371637.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714371637.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica e Informatica, Universit\u00e0 di Salerno, Fisciano (SA), Italy", 
          "id": "http://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Matematica e Informatica, Universit\u00e0 di Salerno, Fisciano (SA), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raiconi", 
        "givenName": "Giancarlo", 
        "id": "sg:person.010341274431.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010341274431.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cocozza", 
        "givenName": "Sergio", 
        "id": "sg:person.0707050400.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707050400.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg1578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009349283", 
          "https://doi.org/10.1038/nrg1578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015848569", 
          "https://doi.org/10.1038/ng2127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034653136", 
          "https://doi.org/10.1038/nrg1155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047659846", 
          "https://doi.org/10.1038/ng1071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01-05", 
    "datePublishedReg": "2010-01-05", 
    "description": "BackgroundComplex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones.ResultsWe present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful.ConclusionsBy the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-11-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "statistical methods", 
      "Monte Carlo process", 
      "different statistical methods", 
      "novel statistical method", 
      "mathematical approach", 
      "mathematical model", 
      "simulated data sets", 
      "non-linear interactions", 
      "data sets", 
      "simple version", 
      "random variability", 
      "multi-logistic model", 
      "statistical power", 
      "simulator behavior", 
      "underlying phenomenon", 
      "standard epidemiological measures", 
      "constraints", 
      "incomplete knowledge", 
      "set", 
      "model", 
      "examples of studies", 
      "full control", 
      "simulated population", 
      "approach", 
      "main characteristics", 
      "simulations", 
      "novel approach", 
      "complexity", 
      "power", 
      "case-control data sets", 
      "description", 
      "biological constraints", 
      "biological terms", 
      "main aim", 
      "version", 
      "terms", 
      "phenomenon", 
      "input", 
      "simulator", 
      "direction", 
      "interaction", 
      "one", 
      "complex diseases", 
      "number", 
      "form", 
      "epidemiological measures", 
      "tool", 
      "behavior", 
      "characteristics", 
      "large amount", 
      "control", 
      "major part", 
      "epistasis", 
      "case-control sample", 
      "information", 
      "better understanding", 
      "process", 
      "possible strategies", 
      "population characteristics", 
      "literature", 
      "epidemiological literature", 
      "part", 
      "measures", 
      "gene-environment interactions", 
      "users", 
      "improvement", 
      "knowledge-based approach", 
      "variability", 
      "strategies", 
      "study", 
      "aim", 
      "samples", 
      "understanding", 
      "multifactorial trait", 
      "factors", 
      "knowledge", 
      "reasons", 
      "evaluation", 
      "amount", 
      "risk factors", 
      "disease risk", 
      "environmental risk factors", 
      "population", 
      "large prevalence", 
      "disease", 
      "environment interaction", 
      "assessment", 
      "environmental factors", 
      "human diseases", 
      "risk", 
      "prevalence", 
      "mortality", 
      "ResultsWe", 
      "traits", 
      "method", 
      "example"
    ], 
    "name": "A novel approach to simulate gene-environment interactions in complex diseases", 
    "pagination": "8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042715118"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20051127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-8", 
      "https://app.dimensions.ai/details/publication/pub.1042715118"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_527.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-11-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      22 PREDICATES      134 URIs      121 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-8 schema:about N66a8c82b7e514c4cb71067e325de7779
2 N75a221f4c11e4781bc6c0af52de1deee
3 N9a241789232e49d29684c5627ba6c056
4 N9ed1c0cc95e845d2b72d29765d6929e6
5 Naa53e5f58d194a82ba0f140dd89db6a6
6 Ne729e7e0ccd447c8b7d829a75b10b197
7 Ne8ab790708424399820f1f451a197b6c
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N76341aa5ad6e48bbaff44aaddecf8ddf
11 schema:citation sg:pub.10.1038/nature05911
12 sg:pub.10.1038/ng1071
13 sg:pub.10.1038/ng2127
14 sg:pub.10.1038/nrg1155
15 sg:pub.10.1038/nrg1578
16 schema:datePublished 2010-01-05
17 schema:datePublishedReg 2010-01-05
18 schema:description BackgroundComplex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones.ResultsWe present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful.ConclusionsBy the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N3041a6ab8cb84aab958667253722758f
23 Nade2c7bd2f0043b7993845a2713d28af
24 sg:journal.1023786
25 schema:keywords Monte Carlo process
26 ResultsWe
27 aim
28 amount
29 approach
30 assessment
31 behavior
32 better understanding
33 biological constraints
34 biological terms
35 case-control data sets
36 case-control sample
37 characteristics
38 complex diseases
39 complexity
40 constraints
41 control
42 data sets
43 description
44 different statistical methods
45 direction
46 disease
47 disease risk
48 environment interaction
49 environmental factors
50 environmental risk factors
51 epidemiological literature
52 epidemiological measures
53 epistasis
54 evaluation
55 example
56 examples of studies
57 factors
58 form
59 full control
60 gene-environment interactions
61 human diseases
62 improvement
63 incomplete knowledge
64 information
65 input
66 interaction
67 knowledge
68 knowledge-based approach
69 large amount
70 large prevalence
71 literature
72 main aim
73 main characteristics
74 major part
75 mathematical approach
76 mathematical model
77 measures
78 method
79 model
80 mortality
81 multi-logistic model
82 multifactorial trait
83 non-linear interactions
84 novel approach
85 novel statistical method
86 number
87 one
88 part
89 phenomenon
90 population
91 population characteristics
92 possible strategies
93 power
94 prevalence
95 process
96 random variability
97 reasons
98 risk
99 risk factors
100 samples
101 set
102 simple version
103 simulated data sets
104 simulated population
105 simulations
106 simulator
107 simulator behavior
108 standard epidemiological measures
109 statistical methods
110 statistical power
111 strategies
112 study
113 terms
114 tool
115 traits
116 underlying phenomenon
117 understanding
118 users
119 variability
120 version
121 schema:name A novel approach to simulate gene-environment interactions in complex diseases
122 schema:pagination 8
123 schema:productId N104abf8aa2a643ebb4145a80e70faab9
124 N8989627ec1b2435db376259aba50e7c9
125 Nd517ecc5adb648e596a8b5dd6fc0cd75
126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042715118
127 https://doi.org/10.1186/1471-2105-11-8
128 schema:sdDatePublished 2022-05-10T10:01
129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
130 schema:sdPublisher Nf586582f021049eb994f9b58d37f36b9
131 schema:url https://doi.org/10.1186/1471-2105-11-8
132 sgo:license sg:explorer/license/
133 sgo:sdDataset articles
134 rdf:type schema:ScholarlyArticle
135 N0186eb4b9b0841f8b0fae7808335862d schema:affiliation grid-institutes:grid.4691.a
136 schema:familyName D'Andrea
137 schema:givenName Daniel
138 rdf:type schema:Person
139 N0c1ee1b079664d3bb9e7756b3ecf111c rdf:first sg:person.010341274431.66
140 rdf:rest N7f715752931941378a55d5644b8dd6b1
141 N104abf8aa2a643ebb4145a80e70faab9 schema:name doi
142 schema:value 10.1186/1471-2105-11-8
143 rdf:type schema:PropertyValue
144 N3041a6ab8cb84aab958667253722758f schema:volumeNumber 11
145 rdf:type schema:PublicationVolume
146 N52c096f207594695aa402e26dea75a74 rdf:first N0186eb4b9b0841f8b0fae7808335862d
147 rdf:rest N6b5c0b85d00b4e339173e3e4f0fea3b9
148 N66a8c82b7e514c4cb71067e325de7779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Disease
150 rdf:type schema:DefinedTerm
151 N6b5c0b85d00b4e339173e3e4f0fea3b9 rdf:first sg:person.01160121450.23
152 rdf:rest Ne77d3b7b38bd468cabba3524e0b24d40
153 N75a221f4c11e4781bc6c0af52de1deee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Environment
155 rdf:type schema:DefinedTerm
156 N76341aa5ad6e48bbaff44aaddecf8ddf rdf:first sg:person.01246065020.55
157 rdf:rest Nb8336a0076a7478e926b7a4c2cc3606a
158 N7f715752931941378a55d5644b8dd6b1 rdf:first sg:person.0707050400.86
159 rdf:rest rdf:nil
160 N8989627ec1b2435db376259aba50e7c9 schema:name dimensions_id
161 schema:value pub.1042715118
162 rdf:type schema:PropertyValue
163 N9a241789232e49d29684c5627ba6c056 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Risk Factors
165 rdf:type schema:DefinedTerm
166 N9ed1c0cc95e845d2b72d29765d6929e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Models, Statistical
168 rdf:type schema:DefinedTerm
169 Naa53e5f58d194a82ba0f140dd89db6a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Humans
171 rdf:type schema:DefinedTerm
172 Nade2c7bd2f0043b7993845a2713d28af schema:issueNumber 1
173 rdf:type schema:PublicationIssue
174 Nb8336a0076a7478e926b7a4c2cc3606a rdf:first sg:person.01171142772.71
175 rdf:rest N52c096f207594695aa402e26dea75a74
176 Nd517ecc5adb648e596a8b5dd6fc0cd75 schema:name pubmed_id
177 schema:value 20051127
178 rdf:type schema:PropertyValue
179 Ne729e7e0ccd447c8b7d829a75b10b197 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Genetic Predisposition to Disease
181 rdf:type schema:DefinedTerm
182 Ne77d3b7b38bd468cabba3524e0b24d40 rdf:first sg:person.0714371637.39
183 rdf:rest N0c1ee1b079664d3bb9e7756b3ecf111c
184 Ne8ab790708424399820f1f451a197b6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Monte Carlo Method
186 rdf:type schema:DefinedTerm
187 Nf586582f021049eb994f9b58d37f36b9 schema:name Springer Nature - SN SciGraph project
188 rdf:type schema:Organization
189 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
190 schema:name Mathematical Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
193 schema:name Statistics
194 rdf:type schema:DefinedTerm
195 sg:journal.1023786 schema:issn 1471-2105
196 schema:name BMC Bioinformatics
197 schema:publisher Springer Nature
198 rdf:type schema:Periodical
199 sg:person.010341274431.66 schema:affiliation grid-institutes:grid.11780.3f
200 schema:familyName Raiconi
201 schema:givenName Giancarlo
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010341274431.66
203 rdf:type schema:Person
204 sg:person.01160121450.23 schema:affiliation grid-institutes:grid.470211.1
205 schema:familyName Miele
206 schema:givenName Gennaro
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160121450.23
208 rdf:type schema:Person
209 sg:person.01171142772.71 schema:affiliation grid-institutes:None
210 schema:familyName Pinelli
211 schema:givenName Michele
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171142772.71
213 rdf:type schema:Person
214 sg:person.01246065020.55 schema:affiliation grid-institutes:grid.4691.a
215 schema:familyName Amato
216 schema:givenName Roberto
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246065020.55
218 rdf:type schema:Person
219 sg:person.0707050400.86 schema:affiliation grid-institutes:None
220 schema:familyName Cocozza
221 schema:givenName Sergio
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707050400.86
223 rdf:type schema:Person
224 sg:person.0714371637.39 schema:affiliation grid-institutes:grid.7372.1
225 schema:familyName Nicodemi
226 schema:givenName Mario
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714371637.39
228 rdf:type schema:Person
229 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
230 https://doi.org/10.1038/nature05911
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/ng1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047659846
233 https://doi.org/10.1038/ng1071
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/ng2127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015848569
236 https://doi.org/10.1038/ng2127
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nrg1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034653136
239 https://doi.org/10.1038/nrg1155
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nrg1578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009349283
242 https://doi.org/10.1038/nrg1578
243 rdf:type schema:CreativeWork
244 grid-institutes:None schema:alternateName Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano", Napoli, Italy
245 schema:name Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano", Napoli, Italy
246 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
247 rdf:type schema:Organization
248 grid-institutes:grid.11780.3f schema:alternateName Dipartimento di Matematica e Informatica, Università di Salerno, Fisciano (SA), Italy
249 schema:name Dipartimento di Matematica e Informatica, Università di Salerno, Fisciano (SA), Italy
250 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
251 rdf:type schema:Organization
252 grid-institutes:grid.4691.a schema:alternateName Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy
253 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
254 schema:name Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy
255 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
256 rdf:type schema:Organization
257 grid-institutes:grid.470211.1 schema:alternateName INFN Sezione di Napoli, Napoli, Italy
258 schema:name Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy
259 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
260 INFN Sezione di Napoli, Napoli, Italy
261 rdf:type schema:Organization
262 grid-institutes:grid.7372.1 schema:alternateName Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK
263 schema:name Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK
264 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
265 INFN Sezione di Napoli, Napoli, Italy
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...