A novel approach to simulate gene-environment interactions in complex diseases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01-05

AUTHORS

Roberto Amato, Michele Pinelli, Daniel D'Andrea, Gennaro Miele, Mario Nicodemi, Giancarlo Raiconi, Sergio Cocozza

ABSTRACT

BACKGROUND: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. RESULTS: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. CONCLUSIONS: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study. More... »

PAGES

8-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-8

DOI

http://dx.doi.org/10.1186/1471-2105-11-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042715118

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20051127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \"Federico II\", Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \"Federico II\", Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amato", 
        "givenName": "Roberto", 
        "id": "sg:person.01246065020.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246065020.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinelli", 
        "givenName": "Michele", 
        "id": "sg:person.01171142772.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171142772.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D'Andrea", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Napoli, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470211.1", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \"Federico II\", Napoli, Italy", 
            "INFN Sezione di Napoli, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "Gennaro", 
        "id": "sg:person.01160121450.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160121450.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "INFN Sezione di Napoli, Napoli, Italy", 
            "Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicodemi", 
        "givenName": "Mario", 
        "id": "sg:person.0714371637.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714371637.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica e Informatica, Universit\u00e0 di Salerno, Fisciano (SA), Italy", 
          "id": "http://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Matematica e Informatica, Universit\u00e0 di Salerno, Fisciano (SA), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raiconi", 
        "givenName": "Giancarlo", 
        "id": "sg:person.010341274431.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010341274431.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Universit\u00e0 di Napoli \"Federico II\" - Universit\u00e0 di Salerno, Italy", 
            "Dipartimento di Biologia e Patologia Cellulare e Molecolare \"L. Califano\", Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cocozza", 
        "givenName": "Sergio", 
        "id": "sg:person.0707050400.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707050400.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047659846", 
          "https://doi.org/10.1038/ng1071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015848569", 
          "https://doi.org/10.1038/ng2127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034653136", 
          "https://doi.org/10.1038/nrg1155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009349283", 
          "https://doi.org/10.1038/nrg1578"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01-05", 
    "datePublishedReg": "2010-01-05", 
    "description": "BACKGROUND: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones.\nRESULTS: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful.\nCONCLUSIONS: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-11-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "statistical methods", 
      "Monte Carlo process", 
      "different statistical methods", 
      "novel statistical method", 
      "mathematical approach", 
      "mathematical model", 
      "simulated data sets", 
      "non-linear interactions", 
      "data sets", 
      "simple version", 
      "random variability", 
      "statistical power", 
      "simulator behavior", 
      "standard epidemiological measures", 
      "underlying phenomenon", 
      "constraints", 
      "incomplete knowledge", 
      "set", 
      "examples of studies", 
      "model", 
      "full control", 
      "approach", 
      "simulated population", 
      "main characteristics", 
      "simulations", 
      "novel approach", 
      "case-control data sets", 
      "complexity", 
      "power", 
      "description", 
      "biological constraints", 
      "main aim", 
      "biological terms", 
      "version", 
      "terms", 
      "phenomenon", 
      "input", 
      "complex diseases", 
      "simulator", 
      "direction", 
      "interaction", 
      "one", 
      "number", 
      "form", 
      "tool", 
      "behavior", 
      "characteristics", 
      "large amount", 
      "epidemiological measures", 
      "major part", 
      "control", 
      "case-control sample", 
      "epistasis", 
      "population characteristics", 
      "information", 
      "possible strategies", 
      "better understanding", 
      "process", 
      "literature", 
      "epidemiological literature", 
      "part", 
      "gene-environment interactions", 
      "measures", 
      "users", 
      "improvement", 
      "knowledge-based approach", 
      "strategies", 
      "variability", 
      "multifactorial trait", 
      "study", 
      "knowledge", 
      "understanding", 
      "aim", 
      "samples", 
      "factors", 
      "reasons", 
      "evaluation", 
      "amount", 
      "population", 
      "environment interaction", 
      "assessment", 
      "disease risk", 
      "large prevalence", 
      "environmental factors", 
      "risk", 
      "risk factors", 
      "environmental risk factors", 
      "traits", 
      "disease", 
      "human diseases", 
      "prevalence", 
      "mortality", 
      "method", 
      "example", 
      "GENS", 
      "iNteraction Simulator", 
      "gene-one environment interaction", 
      "multi-logistic model", 
      "Carlo process", 
      "reasonable biological constraints"
    ], 
    "name": "A novel approach to simulate gene-environment interactions in complex diseases", 
    "pagination": "8-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042715118"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20051127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-8", 
      "https://app.dimensions.ai/details/publication/pub.1042715118"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_519.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-11-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-8'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      22 PREDICATES      138 URIs      125 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-8 schema:about N0c457f5275ed418aae302b35d9151638
2 N19ef8ee6fb554f269cb97ac7e1f838a9
3 N49898d024b26493595bd1a54f8af67c9
4 Nb2cb6c916cdd444d96da60be405c4dd1
5 Nc0ed2c66645845b48fd428e6de073ebc
6 Nda666a4a37b44706a1043192e4594841
7 Ndc66a44773ea4bdeb2f7a8f5ea677ff6
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N16410e06afcb410a9d595f7b431db8d6
11 schema:citation sg:pub.10.1038/nature05911
12 sg:pub.10.1038/ng1071
13 sg:pub.10.1038/ng2127
14 sg:pub.10.1038/nrg1155
15 sg:pub.10.1038/nrg1578
16 schema:datePublished 2010-01-05
17 schema:datePublishedReg 2010-01-05
18 schema:description BACKGROUND: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. RESULTS: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. CONCLUSIONS: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N59f254bdc76a46e99084bbe5c9af3c8c
23 Nc4f851729fba423a84c68ecccfc4c6a6
24 sg:journal.1023786
25 schema:keywords Carlo process
26 GENS
27 Monte Carlo process
28 aim
29 amount
30 approach
31 assessment
32 behavior
33 better understanding
34 biological constraints
35 biological terms
36 case-control data sets
37 case-control sample
38 characteristics
39 complex diseases
40 complexity
41 constraints
42 control
43 data sets
44 description
45 different statistical methods
46 direction
47 disease
48 disease risk
49 environment interaction
50 environmental factors
51 environmental risk factors
52 epidemiological literature
53 epidemiological measures
54 epistasis
55 evaluation
56 example
57 examples of studies
58 factors
59 form
60 full control
61 gene-environment interactions
62 gene-one environment interaction
63 human diseases
64 iNteraction Simulator
65 improvement
66 incomplete knowledge
67 information
68 input
69 interaction
70 knowledge
71 knowledge-based approach
72 large amount
73 large prevalence
74 literature
75 main aim
76 main characteristics
77 major part
78 mathematical approach
79 mathematical model
80 measures
81 method
82 model
83 mortality
84 multi-logistic model
85 multifactorial trait
86 non-linear interactions
87 novel approach
88 novel statistical method
89 number
90 one
91 part
92 phenomenon
93 population
94 population characteristics
95 possible strategies
96 power
97 prevalence
98 process
99 random variability
100 reasonable biological constraints
101 reasons
102 risk
103 risk factors
104 samples
105 set
106 simple version
107 simulated data sets
108 simulated population
109 simulations
110 simulator
111 simulator behavior
112 standard epidemiological measures
113 statistical methods
114 statistical power
115 strategies
116 study
117 terms
118 tool
119 traits
120 underlying phenomenon
121 understanding
122 users
123 variability
124 version
125 schema:name A novel approach to simulate gene-environment interactions in complex diseases
126 schema:pagination 8-8
127 schema:productId N452729d872004641bf228b29ab726ffc
128 N55d4d2f7764e4167b441d9741db594fa
129 N70209b87309444efa2a50742ee2b1075
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042715118
131 https://doi.org/10.1186/1471-2105-11-8
132 schema:sdDatePublished 2022-01-01T18:23
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher Nbe1d6b1bd06e4df593c96a15b3693514
135 schema:url https://doi.org/10.1186/1471-2105-11-8
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N08af104c5ea245a0adb8c74af1480ad0 rdf:first sg:person.010341274431.66
140 rdf:rest Nda8e7ce483e5401aac8923b0593ea2cc
141 N0c457f5275ed418aae302b35d9151638 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Risk Factors
143 rdf:type schema:DefinedTerm
144 N16410e06afcb410a9d595f7b431db8d6 rdf:first sg:person.01246065020.55
145 rdf:rest N4a1e1011996d41e480b2298ef03fae91
146 N19ef8ee6fb554f269cb97ac7e1f838a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Genetic Predisposition to Disease
148 rdf:type schema:DefinedTerm
149 N2e4b91ed18d2436bb1144dad00131d8d rdf:first sg:person.01160121450.23
150 rdf:rest N61f59366f0924bed81685401a750957a
151 N3857dc4256334f3e9ce8b1069d231570 schema:affiliation grid-institutes:grid.4691.a
152 schema:familyName D'Andrea
153 schema:givenName Daniel
154 rdf:type schema:Person
155 N452729d872004641bf228b29ab726ffc schema:name doi
156 schema:value 10.1186/1471-2105-11-8
157 rdf:type schema:PropertyValue
158 N49898d024b26493595bd1a54f8af67c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Models, Statistical
160 rdf:type schema:DefinedTerm
161 N4a1e1011996d41e480b2298ef03fae91 rdf:first sg:person.01171142772.71
162 rdf:rest N78e46b043ad240179f7b3440d12ccdb8
163 N55d4d2f7764e4167b441d9741db594fa schema:name pubmed_id
164 schema:value 20051127
165 rdf:type schema:PropertyValue
166 N59f254bdc76a46e99084bbe5c9af3c8c schema:volumeNumber 11
167 rdf:type schema:PublicationVolume
168 N61f59366f0924bed81685401a750957a rdf:first sg:person.0714371637.39
169 rdf:rest N08af104c5ea245a0adb8c74af1480ad0
170 N70209b87309444efa2a50742ee2b1075 schema:name dimensions_id
171 schema:value pub.1042715118
172 rdf:type schema:PropertyValue
173 N78e46b043ad240179f7b3440d12ccdb8 rdf:first N3857dc4256334f3e9ce8b1069d231570
174 rdf:rest N2e4b91ed18d2436bb1144dad00131d8d
175 Nb2cb6c916cdd444d96da60be405c4dd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 Nbe1d6b1bd06e4df593c96a15b3693514 schema:name Springer Nature - SN SciGraph project
179 rdf:type schema:Organization
180 Nc0ed2c66645845b48fd428e6de073ebc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Disease
182 rdf:type schema:DefinedTerm
183 Nc4f851729fba423a84c68ecccfc4c6a6 schema:issueNumber 1
184 rdf:type schema:PublicationIssue
185 Nda666a4a37b44706a1043192e4594841 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Monte Carlo Method
187 rdf:type schema:DefinedTerm
188 Nda8e7ce483e5401aac8923b0593ea2cc rdf:first sg:person.0707050400.86
189 rdf:rest rdf:nil
190 Ndc66a44773ea4bdeb2f7a8f5ea677ff6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Environment
192 rdf:type schema:DefinedTerm
193 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
194 schema:name Mathematical Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
197 schema:name Statistics
198 rdf:type schema:DefinedTerm
199 sg:journal.1023786 schema:issn 1471-2105
200 schema:name BMC Bioinformatics
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.010341274431.66 schema:affiliation grid-institutes:grid.11780.3f
204 schema:familyName Raiconi
205 schema:givenName Giancarlo
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010341274431.66
207 rdf:type schema:Person
208 sg:person.01160121450.23 schema:affiliation grid-institutes:grid.470211.1
209 schema:familyName Miele
210 schema:givenName Gennaro
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160121450.23
212 rdf:type schema:Person
213 sg:person.01171142772.71 schema:affiliation grid-institutes:None
214 schema:familyName Pinelli
215 schema:givenName Michele
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171142772.71
217 rdf:type schema:Person
218 sg:person.01246065020.55 schema:affiliation grid-institutes:grid.4691.a
219 schema:familyName Amato
220 schema:givenName Roberto
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246065020.55
222 rdf:type schema:Person
223 sg:person.0707050400.86 schema:affiliation grid-institutes:None
224 schema:familyName Cocozza
225 schema:givenName Sergio
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707050400.86
227 rdf:type schema:Person
228 sg:person.0714371637.39 schema:affiliation grid-institutes:grid.7372.1
229 schema:familyName Nicodemi
230 schema:givenName Mario
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714371637.39
232 rdf:type schema:Person
233 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
234 https://doi.org/10.1038/nature05911
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/ng1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047659846
237 https://doi.org/10.1038/ng1071
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/ng2127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015848569
240 https://doi.org/10.1038/ng2127
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nrg1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034653136
243 https://doi.org/10.1038/nrg1155
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nrg1578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009349283
246 https://doi.org/10.1038/nrg1578
247 rdf:type schema:CreativeWork
248 grid-institutes:None schema:alternateName Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano", Napoli, Italy
249 schema:name Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano", Napoli, Italy
250 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
251 rdf:type schema:Organization
252 grid-institutes:grid.11780.3f schema:alternateName Dipartimento di Matematica e Informatica, Università di Salerno, Fisciano (SA), Italy
253 schema:name Dipartimento di Matematica e Informatica, Università di Salerno, Fisciano (SA), Italy
254 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
255 rdf:type schema:Organization
256 grid-institutes:grid.4691.a schema:alternateName Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy
257 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
258 schema:name Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy
259 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
260 rdf:type schema:Organization
261 grid-institutes:grid.470211.1 schema:alternateName INFN Sezione di Napoli, Napoli, Italy
262 schema:name Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy
263 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
264 INFN Sezione di Napoli, Napoli, Italy
265 rdf:type schema:Organization
266 grid-institutes:grid.7372.1 schema:alternateName Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK
267 schema:name Complexity Science Center and Department of Physics, University of Warwick, Coventry, UK
268 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli "Federico II" - Università di Salerno, Italy
269 INFN Sezione di Napoli, Napoli, Italy
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...