pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Frederick A Matsen, Robin B Kodner, E Virginia Armbrust

ABSTRACT

BACKGROUND: Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. RESULTS: This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. CONCLUSIONS: Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. More... »

PAGES

538

References to SciGraph publications

  • 2002-10-10. Sequence-Length Requirements for Phylogenetic Methods in ALGORITHMS IN BIOINFORMATICS
  • 2009-12. phyloXML: XML for evolutionary biology and comparative genomics in BMC BIOINFORMATICS
  • 1990-08. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts in JOURNAL OF MOLECULAR EVOLUTION
  • 2007-01. Accurate phylogenetic classification of variable-length DNA fragments in NATURE METHODS
  • 1994-09. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods in JOURNAL OF MOLECULAR EVOLUTION
  • 2008-10. A simple, fast, and accurate method of phylogenomic inference in GENOME BIOLOGY
  • 2010-12. MLTreeMap - accurate Maximum Likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies in BMC GENOMICS
  • 2007-10. Viral photosynthetic reaction center genes and transcripts in the marine environment in THE ISME JOURNAL
  • 2009-12. TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach in BMC BIOINFORMATICS
  • 2005-09. Genome sequencing in microfabricated high-density picolitre reactors in NATURE
  • 2008-07. Taxonomic distribution of large DNA viruses in the sea in GENOME BIOLOGY
  • 2009-01-22. A core gut microbiome in obese and lean twins in NATURE
  • 2007-09-06. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution in NATURE
  • 2011-06. Polyhedral Geometry of Phylogenetic Rogue Taxa in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2009-09. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models in NATURE METHODS
  • 2005-11. Metagenomics: DNA sequencing of environmental samples in NATURE REVIEWS GENETICS
  • 1981-11. Evolutionary trees from DNA sequences: A maximum likelihood approach in JOURNAL OF MOLECULAR EVOLUTION
  • 2007-11. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite in NATURE
  • 2006-10. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-11-538

    DOI

    http://dx.doi.org/10.1186/1471-2105-11-538

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008466974

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21034504


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bayes Theorem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Likelihood Functions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fred Hutchinson Cancer Research Center", 
              "id": "https://www.grid.ac/institutes/grid.270240.3", 
              "name": [
                "Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matsen", 
            "givenName": "Frederick A", 
            "id": "sg:person.012305007360.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305007360.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "School of Oceanography, University of Washington, Seattle, Washington, USA", 
                "Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kodner", 
            "givenName": "Robin B", 
            "id": "sg:person.01225432640.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225432640.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "School of Oceanography, University of Washington, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Armbrust", 
            "givenName": "E Virginia", 
            "id": "sg:person.0606014604.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606014604.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1046/j.1462-2920.2003.00403.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000405310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0009490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000778834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002974679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005613156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1124234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006869298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007149601", 
              "https://doi.org/10.1038/nmeth976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007149601", 
              "https://doi.org/10.1038/nmeth976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.3.502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007526298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007790653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008886215", 
              "https://doi.org/10.1038/nmeth.1358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008886215", 
              "https://doi.org/10.1038/nmeth.1358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009864240", 
              "https://doi.org/10.1038/nbt1247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009864240", 
              "https://doi.org/10.1038/nbt1247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msn067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009887615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mbs.2007.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011269843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1183907.1183909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012273700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0401478101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012554760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-010-9556-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012756672", 
              "https://doi.org/10.1007/s11538-010-9556-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013618994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genom.9.081307.164359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015853776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017719492", 
              "https://doi.org/10.1038/nrg1709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017719492", 
              "https://doi.org/10.1038/nrg1709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02109483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019697953", 
              "https://doi.org/10.1007/bf02109483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02109483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019697953", 
              "https://doi.org/10.1007/bf02109483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.2001.1862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021488213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-10-r151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023248704", 
              "https://doi.org/10.1186/gb-2008-9-10-r151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2007.67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024569940", 
              "https://doi.org/10.1038/ismej.2007.67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024610917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024849043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01996-06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025834307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1133420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027189280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/17.8.754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027697537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029540629", 
              "https://doi.org/10.1038/nature06130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029876223", 
              "https://doi.org/10.1186/1471-2105-10-56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029876223", 
              "https://doi.org/10.1186/1471-2105-10-56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030170002", 
              "https://doi.org/10.1038/nature07540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq1102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032022164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032106241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45784-4_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033263207", 
              "https://doi.org/10.1007/3-540-45784-4_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45784-4_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033263207", 
              "https://doi.org/10.1007/3-540-45784-4_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rstb.2008.0169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033630408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.5969107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034259503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036046285", 
              "https://doi.org/10.1186/1471-2164-11-461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2011.01018.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039075540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.71.12.8228-8235.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042157769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1127404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042660886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-7-r106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043079124", 
              "https://doi.org/10.1186/gb-2008-9-7-r106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.79.24.7699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043175195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sysbio/syp017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043623696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01734359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044065382", 
              "https://doi.org/10.1007/bf01734359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01734359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044065382", 
              "https://doi.org/10.1007/bf01734359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10635150802422316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044901356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0001456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045077720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046470836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0040234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046937378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.02480-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047075175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00160154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047784476", 
              "https://doi.org/10.1007/bf00160154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050078012", 
              "https://doi.org/10.1186/1471-2105-10-356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-6496(03)00028-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051927716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052833330", 
              "https://doi.org/10.1038/nature06269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10635150290102339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058369285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10635150390235520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058369386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/419657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058710708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2006.13.1101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2006.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061540500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1093857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s089548010138790x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062882596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2412407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069920846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2006.1639535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095578432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/aiccsa.2010.5586973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095785792"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-12", 
        "datePublishedReg": "2010-12-01", 
        "description": "BACKGROUND: Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. \"Phylogenetic placement,\" where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets.\nRESULTS: This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence.\nCONCLUSIONS: Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-11-538", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree", 
        "pagination": "538", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "28561f1c18e0cee7e302c82aa6f448066baadf1f8d4d6f0691eed3789817c840"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21034504"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-11-538"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008466974"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-11-538", 
          "https://app.dimensions.ai/details/publication/pub.1008466974"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/1471-2105-11-538"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-538'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-538'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-538'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-538'


     

    This table displays all metadata directly associated to this object as RDF triples.

    322 TRIPLES      21 PREDICATES      99 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-11-538 schema:about N62db0610bf824cbf8bfff7a715728aa2
    2 N69fcd401e17747bcb308a5e0a2698bf7
    3 N8446d158d4ab4c93914cf522ec879deb
    4 N89076219cabb4804b69fae67a8def480
    5 Nbba116bd886249b2921c37c7603f51f5
    6 Nc3aa313746384b48b1bac597adaae459
    7 Nf561e1b0e98b4a4ea1af6daaff98c2a2
    8 anzsrc-for:01
    9 anzsrc-for:0104
    10 schema:author Nf156e51d5bc84385bfa6d3efbd22f4ac
    11 schema:citation sg:pub.10.1007/3-540-45784-4_26
    12 sg:pub.10.1007/bf00160154
    13 sg:pub.10.1007/bf01734359
    14 sg:pub.10.1007/bf02109483
    15 sg:pub.10.1007/s11538-010-9556-x
    16 sg:pub.10.1038/ismej.2007.67
    17 sg:pub.10.1038/nature03959
    18 sg:pub.10.1038/nature06130
    19 sg:pub.10.1038/nature06269
    20 sg:pub.10.1038/nature07540
    21 sg:pub.10.1038/nbt1247
    22 sg:pub.10.1038/nmeth.1358
    23 sg:pub.10.1038/nmeth976
    24 sg:pub.10.1038/nrg1709
    25 sg:pub.10.1186/1471-2105-10-356
    26 sg:pub.10.1186/1471-2105-10-56
    27 sg:pub.10.1186/1471-2164-11-461
    28 sg:pub.10.1186/gb-2008-9-10-r151
    29 sg:pub.10.1186/gb-2008-9-7-r106
    30 https://doi.org/10.1016/j.mbs.2007.09.001
    31 https://doi.org/10.1016/s0022-2836(05)80360-2
    32 https://doi.org/10.1016/s0168-6496(03)00028-x
    33 https://doi.org/10.1046/j.1462-2920.2003.00403.x
    34 https://doi.org/10.1073/pnas.0401478101
    35 https://doi.org/10.1073/pnas.79.24.7699
    36 https://doi.org/10.1080/10635150290102339
    37 https://doi.org/10.1080/10635150390235520
    38 https://doi.org/10.1080/10635150802422316
    39 https://doi.org/10.1086/419657
    40 https://doi.org/10.1089/cmb.2006.13.1101
    41 https://doi.org/10.1093/bioinformatics/14.9.755
    42 https://doi.org/10.1093/bioinformatics/17.8.754
    43 https://doi.org/10.1093/bioinformatics/18.3.502
    44 https://doi.org/10.1093/bioinformatics/btl446
    45 https://doi.org/10.1093/molbev/msn067
    46 https://doi.org/10.1093/nar/28.1.33
    47 https://doi.org/10.1093/nar/gkn038
    48 https://doi.org/10.1093/nar/gkq1102
    49 https://doi.org/10.1093/oxfordjournals.molbev.a003851
    50 https://doi.org/10.1093/oxfordjournals.molbev.a026201
    51 https://doi.org/10.1093/sysbio/syp017
    52 https://doi.org/10.1098/rspb.2001.1862
    53 https://doi.org/10.1098/rstb.2008.0169
    54 https://doi.org/10.1101/gr.5969107
    55 https://doi.org/10.1109/aiccsa.2010.5586973
    56 https://doi.org/10.1109/ipdps.2006.1639535
    57 https://doi.org/10.1109/tcbb.2006.4
    58 https://doi.org/10.1111/j.1467-9868.2011.01018.x
    59 https://doi.org/10.1126/science.1093857
    60 https://doi.org/10.1126/science.1124234
    61 https://doi.org/10.1126/science.1127404
    62 https://doi.org/10.1126/science.1133420
    63 https://doi.org/10.1128/aem.01996-06
    64 https://doi.org/10.1128/aem.02480-07
    65 https://doi.org/10.1128/aem.71.12.8228-8235.2005
    66 https://doi.org/10.1137/s089548010138790x
    67 https://doi.org/10.1145/1183907.1183909
    68 https://doi.org/10.1146/annurev.genom.9.081307.164359
    69 https://doi.org/10.1371/journal.pbio.0040234
    70 https://doi.org/10.1371/journal.pcbi.1000581
    71 https://doi.org/10.1371/journal.pone.0001456
    72 https://doi.org/10.1371/journal.pone.0009490
    73 https://doi.org/10.2307/2412407
    74 schema:datePublished 2010-12
    75 schema:datePublishedReg 2010-12-01
    76 schema:description BACKGROUND: Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. RESULTS: This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. CONCLUSIONS: Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service.
    77 schema:genre research_article
    78 schema:inLanguage en
    79 schema:isAccessibleForFree true
    80 schema:isPartOf N077e385459ad483a91b4f2e971cd625a
    81 N9b87e1f3089943a6a61b48c3212c414b
    82 sg:journal.1023786
    83 schema:name pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree
    84 schema:pagination 538
    85 schema:productId N3aed6419ef2a4d5180955fc77213dad4
    86 N80a883ec183e46a9aedb9ec7cb77c409
    87 Nb66dac4e32e34a35a2a3c24d5b614253
    88 Nd4dbaf34fe3349f2bd7c4e2c0e933efb
    89 Nf4390d1cbebd457b909f147446297c3c
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008466974
    91 https://doi.org/10.1186/1471-2105-11-538
    92 schema:sdDatePublished 2019-04-10T19:55
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Nc2864b40c15c4342a1bb8d00cab6f260
    95 schema:url http://link.springer.com/10.1186/1471-2105-11-538
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N077e385459ad483a91b4f2e971cd625a schema:volumeNumber 11
    100 rdf:type schema:PublicationVolume
    101 N3aed6419ef2a4d5180955fc77213dad4 schema:name dimensions_id
    102 schema:value pub.1008466974
    103 rdf:type schema:PropertyValue
    104 N62db0610bf824cbf8bfff7a715728aa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Phylogeny
    106 rdf:type schema:DefinedTerm
    107 N69fcd401e17747bcb308a5e0a2698bf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Likelihood Functions
    109 rdf:type schema:DefinedTerm
    110 N7bed44e02f17453d912fbf21fe4c058a rdf:first sg:person.0606014604.82
    111 rdf:rest rdf:nil
    112 N80a883ec183e46a9aedb9ec7cb77c409 schema:name nlm_unique_id
    113 schema:value 100965194
    114 rdf:type schema:PropertyValue
    115 N8446d158d4ab4c93914cf522ec879deb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Base Sequence
    117 rdf:type schema:DefinedTerm
    118 N89076219cabb4804b69fae67a8def480 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Software
    120 rdf:type schema:DefinedTerm
    121 N9b87e1f3089943a6a61b48c3212c414b schema:issueNumber 1
    122 rdf:type schema:PublicationIssue
    123 Nb66dac4e32e34a35a2a3c24d5b614253 schema:name readcube_id
    124 schema:value 28561f1c18e0cee7e302c82aa6f448066baadf1f8d4d6f0691eed3789817c840
    125 rdf:type schema:PropertyValue
    126 Nbba116bd886249b2921c37c7603f51f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Sequence Alignment
    128 rdf:type schema:DefinedTerm
    129 Nc2864b40c15c4342a1bb8d00cab6f260 schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Nc3aa313746384b48b1bac597adaae459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Computational Biology
    133 rdf:type schema:DefinedTerm
    134 Nd4dbaf34fe3349f2bd7c4e2c0e933efb schema:name pubmed_id
    135 schema:value 21034504
    136 rdf:type schema:PropertyValue
    137 Nee6a67bff27941e6aff742073bbe29c7 rdf:first sg:person.01225432640.17
    138 rdf:rest N7bed44e02f17453d912fbf21fe4c058a
    139 Nf156e51d5bc84385bfa6d3efbd22f4ac rdf:first sg:person.012305007360.96
    140 rdf:rest Nee6a67bff27941e6aff742073bbe29c7
    141 Nf4390d1cbebd457b909f147446297c3c schema:name doi
    142 schema:value 10.1186/1471-2105-11-538
    143 rdf:type schema:PropertyValue
    144 Nf561e1b0e98b4a4ea1af6daaff98c2a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Bayes Theorem
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Mathematical Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Statistics
    152 rdf:type schema:DefinedTerm
    153 sg:journal.1023786 schema:issn 1471-2105
    154 schema:name BMC Bioinformatics
    155 rdf:type schema:Periodical
    156 sg:person.01225432640.17 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    157 schema:familyName Kodner
    158 schema:givenName Robin B
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225432640.17
    160 rdf:type schema:Person
    161 sg:person.012305007360.96 schema:affiliation https://www.grid.ac/institutes/grid.270240.3
    162 schema:familyName Matsen
    163 schema:givenName Frederick A
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305007360.96
    165 rdf:type schema:Person
    166 sg:person.0606014604.82 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    167 schema:familyName Armbrust
    168 schema:givenName E Virginia
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606014604.82
    170 rdf:type schema:Person
    171 sg:pub.10.1007/3-540-45784-4_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033263207
    172 https://doi.org/10.1007/3-540-45784-4_26
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf00160154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784476
    175 https://doi.org/10.1007/bf00160154
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/bf01734359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065382
    178 https://doi.org/10.1007/bf01734359
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/bf02109483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019697953
    181 https://doi.org/10.1007/bf02109483
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11538-010-9556-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012756672
    184 https://doi.org/10.1007/s11538-010-9556-x
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/ismej.2007.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024569940
    187 https://doi.org/10.1038/ismej.2007.67
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
    190 https://doi.org/10.1038/nature03959
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature06130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540629
    193 https://doi.org/10.1038/nature06130
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nature06269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052833330
    196 https://doi.org/10.1038/nature06269
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
    199 https://doi.org/10.1038/nature07540
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nbt1247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009864240
    202 https://doi.org/10.1038/nbt1247
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nmeth.1358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008886215
    205 https://doi.org/10.1038/nmeth.1358
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nmeth976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007149601
    208 https://doi.org/10.1038/nmeth976
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nrg1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719492
    211 https://doi.org/10.1038/nrg1709
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1186/1471-2105-10-356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050078012
    214 https://doi.org/10.1186/1471-2105-10-356
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/1471-2105-10-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876223
    217 https://doi.org/10.1186/1471-2105-10-56
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1186/1471-2164-11-461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036046285
    220 https://doi.org/10.1186/1471-2164-11-461
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/gb-2008-9-10-r151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023248704
    223 https://doi.org/10.1186/gb-2008-9-10-r151
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/gb-2008-9-7-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043079124
    226 https://doi.org/10.1186/gb-2008-9-7-r106
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.mbs.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011269843
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/s0168-6496(03)00028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051927716
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1046/j.1462-2920.2003.00403.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000405310
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1073/pnas.0401478101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012554760
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.79.24.7699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043175195
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1080/10635150290102339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369285
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1080/10635150390235520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369386
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1080/10635150802422316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044901356
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1086/419657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058710708
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1089/cmb.2006.13.1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245419
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/bioinformatics/17.8.754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027697537
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bioinformatics/18.3.502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007526298
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/bioinformatics/btl446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046470836
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/molbev/msn067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009887615
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/28.1.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007790653
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/gkn038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024849043
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/nar/gkq1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032022164
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/oxfordjournals.molbev.a003851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002974679
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/oxfordjournals.molbev.a026201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032106241
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/sysbio/syp017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043623696
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1098/rspb.2001.1862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021488213
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1098/rstb.2008.0169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033630408
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1101/gr.5969107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259503
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1109/aiccsa.2010.5586973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095785792
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1109/ipdps.2006.1639535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095578432
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1109/tcbb.2006.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540500
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1111/j.1467-9868.2011.01018.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039075540
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1126/science.1093857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449306
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1126/science.1124234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869298
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1126/science.1127404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042660886
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1126/science.1133420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027189280
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1128/aem.01996-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025834307
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1128/aem.02480-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047075175
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1128/aem.71.12.8228-8235.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042157769
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1137/s089548010138790x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882596
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1145/1183907.1183909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273700
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1146/annurev.genom.9.081307.164359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015853776
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1371/journal.pbio.0040234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046937378
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1371/journal.pcbi.1000581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005613156
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1371/journal.pone.0001456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045077720
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1371/journal.pone.0009490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000778834
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.2307/2412407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920846
    315 rdf:type schema:CreativeWork
    316 https://www.grid.ac/institutes/grid.270240.3 schema:alternateName Fred Hutchinson Cancer Research Center
    317 schema:name Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
    318 rdf:type schema:Organization
    319 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
    320 schema:name Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
    321 School of Oceanography, University of Washington, Seattle, Washington, USA
    322 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...